
The mac80211 subsystem for kernel
developers

Johannes Berg
johannes@sipsolutions.net

The mac80211 subsystem for kernel developers
by Johannes Berg

Copyright © 2007, 2008 Johannes Berg

mac80211 is the Linux stack for 802.11 hardware that implements only partial functionality in hard- or firmware.
This document defines the interface between mac80211 and low-level hardware drivers.

If you’re reading this document and not the header file itself, it will be incomplete because not all documentation has
been converted yet.

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as

published by the Free Software Foundation.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this documentation; if not, write to the Free Software Foundation,

Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
I. The basic mac80211 driver interface..v

1. Basic hardware handling ..1
struct ieee80211_hw...1
enum ieee80211_hw_flags ...3
SET_IEEE80211_DEV ..5
SET_IEEE80211_PERM_ADDR ..6
struct ieee80211_ops ..6
ieee80211_alloc_hw...10
ieee80211_register_hw...11
ieee80211_get_tx_led_name ..11
ieee80211_get_rx_led_name..12
ieee80211_get_assoc_led_name...13
ieee80211_get_radio_led_name ...14
ieee80211_unregister_hw...14
ieee80211_free_hw...15

2. PHY configuration ...17
struct ieee80211_conf...17
enum ieee80211_conf_flags ...18

3. Virtual interfaces ..20
struct ieee80211_if_init_conf...20
struct ieee80211_if_conf ..21

4. Receive and transmit processing ..23
4.1. what should be here ...23
4.2. Frame format ...23
4.3. Alignment issues ...23
4.4. Calling into mac80211 from interrupts ...23
4.5. functions/definitions ..24

5. Frame filtering..42
enum ieee80211_filter_flags...42

II. Advanced driver interface ...44
6. Hardware crypto acceleration ..45

enum set_key_cmd ...45
struct ieee80211_key_conf ...46
enum ieee80211_key_alg ...48
enum ieee80211_key_flags...49

7. Multiple queues and QoS support ..51
struct ieee80211_tx_queue_params..51
struct ieee80211_tx_queue_stats ..52

8. Access point mode support ..53
ieee80211_get_buffered_bc..53
ieee80211_beacon_get ...54

9. Supporting multiple virtual interfaces..56
10. Hardware scan offload..57

ieee80211_scan_completed..57

iii

III. Rate control interface ...58
11. dummy chapter...59

IV. Internals ...60
12. Key handling ..61

12.1. Key handling basics...61
12.2. MORE TBD...61

13. Receive processing...62
14. Transmit processing ...63
15. Station info handling..64

15.1. Programming information ...64
15.2. STA information lifetime rules..70

16. Synchronisation..72

iv

I. The basic mac80211 driver interface
You should read and understand the information contained within this part of the book while
implementing a driver. In some chapters, advanced usage is noted, that may be skipped at first.

This part of the book only covers station and monitor mode functionality, additional information required
to implement the other modes is covered in the second part of the book.

Chapter 1. Basic hardware handling

TBD

This chapter shall contain information on getting a hw struct allocated and registered with mac80211.

Since it is required to allocate rates/modes before registering a hw struct, this chapter shall also contain
information on setting up the rate/mode structs.

Additionally, some discussion about the callbacks and the general programming model should be in here,
including the definition of ieee80211_ops which will be referred to a lot.

Finally, a discussion of hardware capabilities should be done with references to other parts of the book.

struct ieee80211_hw

LINUX
Kernel Hackers ManualApril 2009

Name
struct ieee80211_hw — hardware information and state

Synopsis
struct ieee80211_hw {
struct ieee80211_conf conf;
struct wiphy * wiphy;
struct workqueue_struct * workqueue;
const char * rate_control_algorithm;
void * priv;
u32 flags;
unsigned int extra_tx_headroom;
int channel_change_time;
int vif_data_size;
int sta_data_size;
u16 queues;
u16 ampdu_queues;
u16 max_listen_interval;
s8 max_signal;
u8 max_rates;
u8 max_rate_tries;

};

1

Chapter 1. Basic hardware handling

Members

conf

struct ieee80211_conf, device configuration, don’t use.

wiphy

This points to the struct wiphy allocated for this 802.11 PHY. You must fill in the perm_addr and
dev members of this structure using SET_IEEE80211_DEV and SET_IEEE80211_PERM_ADDR.
Additionally, all supported bands (with channels, bitrates) are registered here.

workqueue

single threaded workqueue available for driver use, allocated by mac80211 on registration and
flushed when an interface is removed.

rate_control_algorithm

rate control algorithm for this hardware. If unset (NULL), the default algorithm will be used. Must
be set before calling ieee80211_register_hw.

priv

pointer to private area that was allocated for driver use along with this structure.

flags

hardware flags, see enum ieee80211_hw_flags.

extra_tx_headroom

headroom to reserve in each transmit skb for use by the driver (e.g. for transmit headers.)

channel_change_time

time (in microseconds) it takes to change channels.

vif_data_size

size (in bytes) of the drv_priv data area within struct ieee80211_vif.

sta_data_size

size (in bytes) of the drv_priv data area within struct ieee80211_sta.

queues

number of available hardware transmit queues for data packets. WMM/QoS requires at least four,
these queues need to have configurable access parameters.

ampdu_queues

number of available hardware transmit queues for A-MPDU packets, these have no access
parameters because they’re used only for A-MPDU frames. Note that mac80211 will not currently
use any of the regular queues for aggregation.

2

Chapter 1. Basic hardware handling

max_listen_interval

max listen interval in units of beacon interval that HW supports

max_signal

Maximum value for signal (rssi) in RX information, used only when
IEEE80211_HW_SIGNAL_UNSPEC or IEEE80211_HW_SIGNAL_DB

max_rates

maximum number of alternate rate retry stages

max_rate_tries

maximum number of tries for each stage

Description

This structure contains the configuration and hardware information for an 802.11 PHY.

NOTICE

All work performed on this workqueue should NEVER acquire the RTNL lock (i.e. Don’t use the
function ieee80211_iterate_active_interfaces)

enum ieee80211_hw_flags

LINUX
Kernel Hackers ManualApril 2009

Name
enum ieee80211_hw_flags — hardware flags

Synopsis
enum ieee80211_hw_flags {
IEEE80211_HW_RX_INCLUDES_FCS,
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING,
IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE,

3

Chapter 1. Basic hardware handling

IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE,
IEEE80211_HW_SIGNAL_UNSPEC,
IEEE80211_HW_SIGNAL_DB,
IEEE80211_HW_SIGNAL_DBM,
IEEE80211_HW_NOISE_DBM,
IEEE80211_HW_SPECTRUM_MGMT,
IEEE80211_HW_AMPDU_AGGREGATION,
IEEE80211_HW_NO_STACK_DYNAMIC_PS

};

Constants

IEEE80211_HW_RX_INCLUDES_FCS

Indicates that received frames passed to the stack include the FCS at the end.

IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING

Some wireless LAN chipsets buffer broadcast/multicast frames for power saving stations in the
hardware/firmware and others rely on the host system for such buffering. This option is used to
configure the IEEE 802.11 upper layer to buffer broadcast and multicast frames when there are
power saving stations so that the driver can fetch them with ieee80211_get_buffered_bc.

IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE

Hardware is not capable of short slot operation on the 2.4 GHz band.

IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE

Hardware is not capable of receiving frames with short preamble on the 2.4 GHz band.

IEEE80211_HW_SIGNAL_UNSPEC

Hardware can provide signal values but we don’t know its units. We expect values between 0 and
max_signal. If possible please provide dB or dBm instead.

IEEE80211_HW_SIGNAL_DB

Hardware gives signal values in dB, decibel difference from an arbitrary, fixed reference. We expect
values between 0 and max_signal. If possible please provide dBm instead.

IEEE80211_HW_SIGNAL_DBM

Hardware gives signal values in dBm, decibel difference from one milliwatt. This is the preferred
method since it is standardized between different devices. max_signal does not need to be set.

IEEE80211_HW_NOISE_DBM

Hardware can provide noise (radio interference) values in units dBm, decibel difference from one
milliwatt.

4

Chapter 1. Basic hardware handling

IEEE80211_HW_SPECTRUM_MGMT

Hardware supports spectrum management defined in 802.11h Measurement, Channel Switch,
Quieting, TPC

IEEE80211_HW_AMPDU_AGGREGATION

Hardware supports 11n A-MPDU aggregation.

IEEE80211_HW_NO_STACK_DYNAMIC_PS

Hardware which has dynamic power save support, meaning that power save is enabled in idle
periods, and don’t need support from stack.

Description

These flags are used to indicate hardware capabilities to the stack. Generally, flags here should have their
meaning done in a way that the simplest hardware doesn’t need setting any particular flags. There are
some exceptions to this rule, however, so you are advised to review these flags carefully.

SET_IEEE80211_DEV

LINUX
Kernel Hackers ManualApril 2009

Name
SET_IEEE80211_DEV — set device for 802.11 hardware

Synopsis

void SET_IEEE80211_DEV (struct ieee80211_hw * hw, struct device * dev);

Arguments

hw

the struct ieee80211_hw to set the device for

5

Chapter 1. Basic hardware handling

dev

the struct device of this 802.11 device

SET_IEEE80211_PERM_ADDR

LINUX
Kernel Hackers ManualApril 2009

Name
SET_IEEE80211_PERM_ADDR — set the permanent MAC address for 802.11 hardware

Synopsis

void SET_IEEE80211_PERM_ADDR (struct ieee80211_hw * hw, u8 * addr);

Arguments

hw

the struct ieee80211_hw to set the MAC address for

addr

the address to set

struct ieee80211_ops

LINUX
Kernel Hackers ManualApril 2009

Name
struct ieee80211_ops — callbacks from mac80211 to the driver

6

Chapter 1. Basic hardware handling

Synopsis
struct ieee80211_ops {
int (* tx) (struct ieee80211_hw *hw, struct sk_buff *skb);
int (* start) (struct ieee80211_hw *hw);
void (* stop) (struct ieee80211_hw *hw);
int (* add_interface) (struct ieee80211_hw *hw,struct ieee80211_if_init_conf *conf);
void (* remove_interface) (struct ieee80211_hw *hw,struct ieee80211_if_init_conf *conf);
int (* config) (struct ieee80211_hw *hw, u32 changed);
int (* config_interface) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_if_conf *conf);
void (* bss_info_changed) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_bss_conf *info,u32 changed);
void (* configure_filter) (struct ieee80211_hw *hw,unsigned int changed_flags,unsigned int *total_flags,int mc_count, struct dev_addr_list *mc_list);
int (* set_tim) (struct ieee80211_hw *hw, struct ieee80211_sta *sta,bool set);
int (* set_key) (struct ieee80211_hw *hw, enum set_key_cmd cmd,const u8 *local_address, const u8 *address,struct ieee80211_key_conf *key);
void (* update_tkip_key) (struct ieee80211_hw *hw,struct ieee80211_key_conf *conf, const u8 *address,u32 iv32, u16 *phase1key);
int (* hw_scan) (struct ieee80211_hw *hw, u8 *ssid, size_t len);
int (* get_stats) (struct ieee80211_hw *hw,struct ieee80211_low_level_stats *stats);
void (* get_tkip_seq) (struct ieee80211_hw *hw, u8 hw_key_idx,u32 *iv32, u16 *iv16);
int (* set_rts_threshold) (struct ieee80211_hw *hw, u32 value);
void (* sta_notify) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,enum sta_notify_cmd, struct ieee80211_sta *sta);
int (* conf_tx) (struct ieee80211_hw *hw, u16 queue,const struct ieee80211_tx_queue_params *params);
int (* get_tx_stats) (struct ieee80211_hw *hw,struct ieee80211_tx_queue_stats *stats);
u64 (* get_tsf) (struct ieee80211_hw *hw);
void (* reset_tsf) (struct ieee80211_hw *hw);
int (* tx_last_beacon) (struct ieee80211_hw *hw);
int (* ampdu_action) (struct ieee80211_hw *hw,enum ieee80211_ampdu_mlme_action action,struct ieee80211_sta *sta, u16 tid, u16 *ssn);

};

Members

tx

Handler that 802.11 module calls for each transmitted frame. skb contains the buffer starting from
the IEEE 802.11 header. The low-level driver should send the frame out based on configuration in
the TX control data. This handler should, preferably, never fail and stop queues appropriately, more
importantly, however, it must never fail for A-MPDU-queues. Must be implemented and atomic.

start

Called before the first netdevice attached to the hardware is enabled. This should turn on the
hardware and must turn on frame reception (for possibly enabled monitor interfaces.) Returns
negative error codes, these may be seen in userspace, or zero. When the device is started it should
not have a MAC address to avoid acknowledging frames before a non-monitor device is added.
Must be implemented.

stop

Called after last netdevice attached to the hardware is disabled. This should turn off the hardware (at
least it must turn off frame reception.) May be called right after add_interface if that rejects an
interface. Must be implemented.

7

Chapter 1. Basic hardware handling

add_interface

Called when a netdevice attached to the hardware is enabled. Because it is not called for monitor
mode devices, start and stop must be implemented. The driver should perform any initialization
it needs before the device can be enabled. The initial configuration for the interface is given in the
conf parameter. The callback may refuse to add an interface by returning a negative error code
(which will be seen in userspace.) Must be implemented.

remove_interface

Notifies a driver that an interface is going down. The stop callback is called after this if it is the last
interface and no monitor interfaces are present. When all interfaces are removed, the MAC address
in the hardware must be cleared so the device no longer acknowledges packets, the mac_addr
member of the conf structure is, however, set to the MAC address of the device going away. Hence,
this callback must be implemented.

config

Handler for configuration requests. IEEE 802.11 code calls this function to change hardware
configuration, e.g., channel.

config_interface

Handler for configuration requests related to interfaces (e.g. BSSID changes.)

bss_info_changed

Handler for configuration requests related to BSS parameters that may vary during BSS’s lifespan,
and may affect low level driver (e.g. assoc/disassoc status, erp parameters). This function should not
be used if no BSS has been set, unless for association indication. The changed parameter indicates
which of the bss parameters has changed when a call is made.

configure_filter

Configure the device’s RX filter. See the section “Frame filtering” for more information. This
callback must be implemented and atomic.

set_tim

Set TIM bit. mac80211 calls this function when a TIM bit must be set or cleared for a given STA.
Must be atomic.

set_key

See the section “Hardware crypto acceleration” This callback can sleep, and is only called between
add_interface and remove_interface calls, i.e. while the interface with the given local_address is
enabled.

update_tkip_key

See the section “Hardware crypto acceleration” This callback will be called in the context of Rx.
Called for drivers which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.

8

Chapter 1. Basic hardware handling

hw_scan

Ask the hardware to service the scan request, no need to start the scan state machine in stack. The
scan must honour the channel configuration done by the regulatory agent in the wiphy’s registered
bands. When the scan finishes, ieee80211_scan_completed must be called; note that it also
must be called when the scan cannot finish because the hardware is turned off! Anything else is a
bug!

get_stats

return low-level statistics

get_tkip_seq

If your device implements TKIP encryption in hardware this callback should be provided to read the
TKIP transmit IVs (both IV32 and IV16) for the given key from hardware.

set_rts_threshold

Configuration of RTS threshold (if device needs it)

sta_notify

Notifies low level driver about addition, removal or power state transition of an associated station,
AP, IBSS/WDS/mesh peer etc. Must be atomic.

conf_tx

Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), bursting) for a hardware TX
queue.

get_tx_stats

Get statistics of the current TX queue status. This is used to get number of currently queued packets
(queue length), maximum queue size (limit), and total number of packets sent using each TX queue
(count). The ’stats’ pointer points to an array that has hw->queues + hw->ampdu_queues items.

get_tsf

Get the current TSF timer value from firmware/hardware. Currently, this is only used for IBSS
mode debugging and, as such, is not a required function. Must be atomic.

reset_tsf

Reset the TSF timer and allow firmware/hardware to synchronize with other STAs in the IBSS. This
is only used in IBSS mode. This function is optional if the firmware/hardware takes full care of TSF
synchronization.

tx_last_beacon

Determine whether the last IBSS beacon was sent by us. This is needed only for IBSS mode and the
result of this function is used to determine whether to reply to Probe Requests.

ampdu_action

Perform a certain A-MPDU action The RA/TID combination determines the destination and TID
we want the ampdu action to be performed for. The action is defined through

9

Chapter 1. Basic hardware handling

ieee80211_ampdu_mlme_action. Starting sequence number (ssn) is the first frame we expect to
perform the action on. notice that TX/RX_STOP can pass NULL for this parameter.

Description

This structure contains various callbacks that the driver may handle or, in some cases, must handle, for
example to configure the hardware to a new channel or to transmit a frame.

ieee80211_alloc_hw

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_alloc_hw — Allocate a new hardware device

Synopsis

struct ieee80211_hw * ieee80211_alloc_hw (size_t priv_data_len, const struct
ieee80211_ops * ops);

Arguments

priv_data_len

length of private data

ops

callbacks for this device

Description

10

Chapter 1. Basic hardware handling

This must be called once for each hardware device. The returned pointer must be used to refer to this
device when calling other functions. mac80211 allocates a private data area for the driver pointed to by
priv in struct ieee80211_hw, the size of this area is given as priv_data_len.

ieee80211_register_hw

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_register_hw — Register hardware device

Synopsis

int ieee80211_register_hw (struct ieee80211_hw * hw);

Arguments

hw

the device to register as returned by ieee80211_alloc_hw

Description

You must call this function before any other functions in mac80211. Note that before a hardware can be
registered, you need to fill the contained wiphy’s information.

ieee80211_get_tx_led_name

LINUX

11

Chapter 1. Basic hardware handling

Kernel Hackers ManualApril 2009

Name
ieee80211_get_tx_led_name — get name of TX LED

Synopsis

char * ieee80211_get_tx_led_name (struct ieee80211_hw * hw);

Arguments

hw

the hardware to get the LED trigger name for

Description

mac80211 creates a transmit LED trigger for each wireless hardware that can be used to drive LEDs if
your driver registers a LED device. This function returns the name (or NULL if not configured for LEDs)
of the trigger so you can automatically link the LED device.

ieee80211_get_rx_led_name

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_get_rx_led_name — get name of RX LED

Synopsis

char * ieee80211_get_rx_led_name (struct ieee80211_hw * hw);

12

Chapter 1. Basic hardware handling

Arguments

hw

the hardware to get the LED trigger name for

Description

mac80211 creates a receive LED trigger for each wireless hardware that can be used to drive LEDs if
your driver registers a LED device. This function returns the name (or NULL if not configured for LEDs)
of the trigger so you can automatically link the LED device.

ieee80211_get_assoc_led_name

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_get_assoc_led_name — get name of association LED

Synopsis

char * ieee80211_get_assoc_led_name (struct ieee80211_hw * hw);

Arguments

hw

the hardware to get the LED trigger name for

Description

13

Chapter 1. Basic hardware handling

mac80211 creates a association LED trigger for each wireless hardware that can be used to drive LEDs if
your driver registers a LED device. This function returns the name (or NULL if not configured for LEDs)
of the trigger so you can automatically link the LED device.

ieee80211_get_radio_led_name

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_get_radio_led_name — get name of radio LED

Synopsis

char * ieee80211_get_radio_led_name (struct ieee80211_hw * hw);

Arguments

hw

the hardware to get the LED trigger name for

Description

mac80211 creates a radio change LED trigger for each wireless hardware that can be used to drive LEDs
if your driver registers a LED device. This function returns the name (or NULL if not configured for
LEDs) of the trigger so you can automatically link the LED device.

ieee80211_unregister_hw

LINUX

14

Chapter 1. Basic hardware handling

Kernel Hackers ManualApril 2009

Name
ieee80211_unregister_hw — Unregister a hardware device

Synopsis

void ieee80211_unregister_hw (struct ieee80211_hw * hw);

Arguments

hw

the hardware to unregister

Description

This function instructs mac80211 to free allocated resources and unregister netdevices from the
networking subsystem.

ieee80211_free_hw

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_free_hw — free hardware descriptor

Synopsis

void ieee80211_free_hw (struct ieee80211_hw * hw);

15

Chapter 1. Basic hardware handling

Arguments

hw

the hardware to free

Description

This function frees everything that was allocated, including the private data for the driver. You must call
ieee80211_unregister_hw before calling this function.

16

Chapter 2. PHY configuration

TBD

This chapter should describe PHY handling including start/stop callbacks and the various structures used.

struct ieee80211_conf

LINUX
Kernel Hackers ManualApril 2009

Name
struct ieee80211_conf — configuration of the device

Synopsis
struct ieee80211_conf {
int beacon_int;
u32 flags;
int power_level;
u16 listen_interval;
bool radio_enabled;
u8 long_frame_max_tx_count;
u8 short_frame_max_tx_count;
struct ieee80211_channel * channel;
struct ieee80211_ht_conf ht;

};

Members

beacon_int

beacon interval (TODO make interface config)

flags

configuration flags defined above

power_level

requested transmit power (in dBm)

listen_interval

listen interval in units of beacon interval

17

Chapter 2. PHY configuration

radio_enabled

when zero, driver is required to switch off the radio.

long_frame_max_tx_count

Maximum number of transmissions for a “long” frame (a frame not RTS protected), called
“dot11LongRetryLimit” in 802.11, but actually means the number of transmissions not the number
of retries

short_frame_max_tx_count

Maximum number of transmissions for a “short” frame, called “dot11ShortRetryLimit” in 802.11,
but actually means the number of transmissions not the number of retries

channel

the channel to tune to

ht

the HT configuration for the device

Description

This struct indicates how the driver shall configure the hardware.

enum ieee80211_conf_flags

LINUX
Kernel Hackers ManualApril 2009

Name
enum ieee80211_conf_flags — configuration flags

Synopsis
enum ieee80211_conf_flags {
IEEE80211_CONF_RADIOTAP,
IEEE80211_CONF_PS

};

18

Chapter 2. PHY configuration

Constants

IEEE80211_CONF_RADIOTAP

add radiotap header at receive time (if supported)

IEEE80211_CONF_PS

Enable 802.11 power save mode

Description

Flags to define PHY configuration options

19

Chapter 3. Virtual interfaces

TBD

This chapter should describe virtual interface basics that are relevant to the driver (VLANs, MGMT etc
are not.) It should explain the use of the add_iface/remove_iface callbacks as well as the interface
configuration callbacks.

Things related to AP mode should be discussed there.

Things related to supporting multiple interfaces should be in the appropriate chapter, a BIG FAT note
should be here about this though and the recommendation to allow only a single interface in STA mode
at first!

struct ieee80211_if_init_conf

LINUX
Kernel Hackers ManualApril 2009

Name
struct ieee80211_if_init_conf — initial configuration of an interface

Synopsis
struct ieee80211_if_init_conf {
enum nl80211_iftype type;
struct ieee80211_vif * vif;
void * mac_addr;

};

Members

type

one of enum nl80211_iftype constants. Determines the type of added/removed interface.

vif

pointer to a driver-use per-interface structure. The pointer itself is also used for various functions
including ieee80211_beacon_get and ieee80211_get_buffered_bc.

20

Chapter 3. Virtual interfaces

mac_addr

pointer to MAC address of the interface. This pointer is valid until the interface is removed (i.e. it
cannot be used after remove_interface callback was called for this interface).

Description

This structure is used in add_interface and remove_interface callbacks of struct ieee80211_hw.

When you allow multiple interfaces to be added to your PHY, take care that the hardware can actually
handle multiple MAC addresses. However, also take care that when there’s no interface left with
mac_addr != NULL you remove the MAC address from the device to avoid acknowledging packets in
pure monitor mode.

struct ieee80211_if_conf

LINUX
Kernel Hackers ManualApril 2009

Name
struct ieee80211_if_conf — configuration of an interface

Synopsis
struct ieee80211_if_conf {
u32 changed;
u8 * bssid;

};

Members

changed

parameters that have changed, see enum ieee80211_if_conf_change.

bssid

BSSID of the network we are associated to/creating.

21

Chapter 3. Virtual interfaces

Description

This structure is passed to the config_interface callback of struct ieee80211_hw.

22

Chapter 4. Receive and transmit processing

4.1. what should be here

TBD

This should describe the receive and transmit paths in mac80211/the drivers as well as transmit status
handling.

4.2. Frame format

As a general rule, when frames are passed between mac80211 and the driver, they start with the IEEE
802.11 header and include the same octets that are sent over the air except for the FCS which should be
calculated by the hardware.

There are, however, various exceptions to this rule for advanced features:

The first exception is for hardware encryption and decryption offload where the IV/ICV may or may not
be generated in hardware.

Secondly, when the hardware handles fragmentation, the frame handed to the driver from mac80211 is
the MSDU, not the MPDU.

Finally, for received frames, the driver is able to indicate that it has filled a radiotap header and put that in
front of the frame; if it does not do so then mac80211 may add this under certain circumstances.

4.3. Alignment issues

TBD

4.4. Calling into mac80211 from interrupts

23

Chapter 4. Receive and transmit processing

Only ieee80211_tx_status_irqsafe and ieee80211_rx_irqsafe can be called in hardware
interrupt context. The low-level driver must not call any other functions in hardware interrupt context. If
there is a need for such call, the low-level driver should first ACK the interrupt and perform the IEEE
802.11 code call after this, e.g. from a scheduled workqueue or even tasklet function.

NOTE: If the driver opts to use the _irqsafe functions, it may not also use the non-IRQ-safe functions!

4.5. functions/definitions

struct ieee80211_rx_status

LINUX
Kernel Hackers ManualApril 2009

Name
struct ieee80211_rx_status — receive status

Synopsis
struct ieee80211_rx_status {
u64 mactime;
enum ieee80211_band band;
int freq;
int signal;
int noise;
int qual;
int antenna;
int rate_idx;
int flag;

};

Members

mactime

value in microseconds of the 64-bit Time Synchronization Function (TSF) timer when the first data
symbol (MPDU) arrived at the hardware.

band

the active band when this frame was received

24

Chapter 4. Receive and transmit processing

freq

frequency the radio was tuned to when receiving this frame, in MHz

signal

signal strength when receiving this frame, either in dBm, in dB or unspecified depending on the
hardware capabilities flags IEEE80211_HW_SIGNAL_*

noise

noise when receiving this frame, in dBm.

qual

overall signal quality indication, in percent (0-100).

antenna

antenna used

rate_idx

index of data rate into band’s supported rates or MCS index if HT rates are use (RX_FLAG_HT)

flag

RX_FLAG_*

Description

The low-level driver should provide this information (the subset supported by hardware) to the 802.11
code with each received frame.

enum mac80211_rx_flags

LINUX
Kernel Hackers ManualApril 2009

Name
enum mac80211_rx_flags — receive flags

25

Chapter 4. Receive and transmit processing

Synopsis
enum mac80211_rx_flags {
RX_FLAG_MMIC_ERROR,
RX_FLAG_DECRYPTED,
RX_FLAG_RADIOTAP,
RX_FLAG_MMIC_STRIPPED,
RX_FLAG_IV_STRIPPED,
RX_FLAG_FAILED_FCS_CRC,
RX_FLAG_FAILED_PLCP_CRC,
RX_FLAG_TSFT,
RX_FLAG_SHORTPRE,
RX_FLAG_HT,
RX_FLAG_40MHZ,
RX_FLAG_SHORT_GI

};

Constants

RX_FLAG_MMIC_ERROR

Michael MIC error was reported on this frame. Use together with RX_FLAG_MMIC_STRIPPED.

RX_FLAG_DECRYPTED

This frame was decrypted in hardware.

RX_FLAG_RADIOTAP

This frame starts with a radiotap header.

RX_FLAG_MMIC_STRIPPED

the Michael MIC is stripped off this frame, verification has been done by the hardware.

RX_FLAG_IV_STRIPPED

The IV/ICV are stripped from this frame. If this flag is set, the stack cannot do any replay detection
hence the driver or hardware will have to do that.

RX_FLAG_FAILED_FCS_CRC

Set this flag if the FCS check failed on the frame.

RX_FLAG_FAILED_PLCP_CRC

Set this flag if the PCLP check failed on the frame.

RX_FLAG_TSFT

The timestamp passed in the RX status (mactime field) is valid. This is useful in monitor mode and
necessary for beacon frames to enable IBSS merging.

26

Chapter 4. Receive and transmit processing

RX_FLAG_SHORTPRE

Short preamble was used for this frame

RX_FLAG_HT

HT MCS was used and rate_idx is MCS index

RX_FLAG_40MHZ

HT40 (40 MHz) was used

RX_FLAG_SHORT_GI

Short guard interval was used

Description

These flags are used with the flag member of struct ieee80211_rx_status.

struct ieee80211_tx_info

LINUX
Kernel Hackers ManualApril 2009

Name
struct ieee80211_tx_info — skb transmit information

Synopsis
struct ieee80211_tx_info {
u32 flags;
u8 band;
u8 antenna_sel_tx;
u8 pad[2];
union {unnamed_union};

};

27

Chapter 4. Receive and transmit processing

Members

flags

transmit info flags, defined above

band

the band to transmit on (use for checking for races)

antenna_sel_tx

antenna to use, 0 for automatic diversity

pad[2]

padding, ignore

{unnamed_union}

anonymous

Description

This structure is placed in skb->cb for three uses: (1) mac80211 TX control - mac80211 tells the driver
what to do (2) driver internal use (if applicable) (3) TX status information - driver tells mac80211 what
happened

The TX control’s sta pointer is only valid during the ->tx call, it may be NULL.

ieee80211_rx

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_rx — receive frame

28

Chapter 4. Receive and transmit processing

Synopsis

void ieee80211_rx (struct ieee80211_hw * hw, struct sk_buff * skb, struct
ieee80211_rx_status * status);

Arguments

hw

the hardware this frame came in on

skb

the buffer to receive, owned by mac80211 after this call

status

status of this frame; the status pointer need not be valid after this function returns

Description

Use this function to hand received frames to mac80211. The receive buffer in skb must start with an
IEEE 802.11 header or a radiotap header if RX_FLAG_RADIOTAP is set in the status flags.

This function may not be called in IRQ context. Calls to this function for a single hardware must be
synchronized against each other. Calls to this function and ieee80211_rx_irqsafe may not be mixed
for a single hardware.

ieee80211_rx_irqsafe

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_rx_irqsafe — receive frame

29

Chapter 4. Receive and transmit processing

Synopsis

void ieee80211_rx_irqsafe (struct ieee80211_hw * hw, struct sk_buff * skb,
struct ieee80211_rx_status * status);

Arguments

hw

the hardware this frame came in on

skb

the buffer to receive, owned by mac80211 after this call

status

status of this frame; the status pointer need not be valid after this function returns and is not freed by
mac80211, it is recommended that it points to a stack area

Description

Like ieee80211_rx but can be called in IRQ context (internally defers to a tasklet.)

Calls to this function and ieee80211_rx may not be mixed for a single hardware.

ieee80211_tx_status

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_tx_status — transmit status callback

Synopsis

void ieee80211_tx_status (struct ieee80211_hw * hw, struct sk_buff * skb);

30

Chapter 4. Receive and transmit processing

Arguments

hw

the hardware the frame was transmitted by

skb

the frame that was transmitted, owned by mac80211 after this call

Description

Call this function for all transmitted frames after they have been transmitted. It is permissible to not call
this function for multicast frames but this can affect statistics.

This function may not be called in IRQ context. Calls to this function for a single hardware must be
synchronized against each other. Calls to this function and ieee80211_tx_status_irqsafe may not
be mixed for a single hardware.

ieee80211_tx_status_irqsafe

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_tx_status_irqsafe — IRQ-safe transmit status callback

Synopsis

void ieee80211_tx_status_irqsafe (struct ieee80211_hw * hw, struct sk_buff *
skb);

31

Chapter 4. Receive and transmit processing

Arguments

hw

the hardware the frame was transmitted by

skb

the frame that was transmitted, owned by mac80211 after this call

Description

Like ieee80211_tx_status but can be called in IRQ context (internally defers to a tasklet.)

Calls to this function and ieee80211_tx_status may not be mixed for a single hardware.

ieee80211_rts_get

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_rts_get — RTS frame generation function

Synopsis

void ieee80211_rts_get (struct ieee80211_hw * hw, struct ieee80211_vif * vif,
const void * frame, size_t frame_len, const struct ieee80211_tx_info *
frame_txctl, struct ieee80211_rts * rts);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

32

Chapter 4. Receive and transmit processing

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

frame

pointer to the frame that is going to be protected by the RTS.

frame_len

the frame length (in octets).

frame_txctl

struct ieee80211_tx_info of the frame.

rts

The buffer where to store the RTS frame.

Description

If the RTS frames are generated by the host system (i.e., not in hardware/firmware), the low-level driver
uses this function to receive the next RTS frame from the 802.11 code. The low-level is responsible for
calling this function before and RTS frame is needed.

ieee80211_rts_duration

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_rts_duration — Get the duration field for an RTS frame

Synopsis

__le16 ieee80211_rts_duration (struct ieee80211_hw * hw, struct ieee80211_vif

* vif, size_t frame_len, const struct ieee80211_tx_info * frame_txctl);

33

Chapter 4. Receive and transmit processing

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

frame_len

the length of the frame that is going to be protected by the RTS.

frame_txctl

struct ieee80211_tx_info of the frame.

Description

If the RTS is generated in firmware, but the host system must provide the duration field, the low-level
driver uses this function to receive the duration field value in little-endian byteorder.

ieee80211_ctstoself_get

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_ctstoself_get — CTS-to-self frame generation function

Synopsis

void ieee80211_ctstoself_get (struct ieee80211_hw * hw, struct ieee80211_vif

* vif, const void * frame, size_t frame_len, const struct ieee80211_tx_info *
frame_txctl, struct ieee80211_cts * cts);

34

Chapter 4. Receive and transmit processing

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

frame

pointer to the frame that is going to be protected by the CTS-to-self.

frame_len

the frame length (in octets).

frame_txctl

struct ieee80211_tx_info of the frame.

cts

The buffer where to store the CTS-to-self frame.

Description

If the CTS-to-self frames are generated by the host system (i.e., not in hardware/firmware), the low-level
driver uses this function to receive the next CTS-to-self frame from the 802.11 code. The low-level is
responsible for calling this function before and CTS-to-self frame is needed.

ieee80211_ctstoself_duration

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_ctstoself_duration — Get the duration field for a CTS-to-self frame

35

Chapter 4. Receive and transmit processing

Synopsis

__le16 ieee80211_ctstoself_duration (struct ieee80211_hw * hw, struct
ieee80211_vif * vif, size_t frame_len, const struct ieee80211_tx_info *
frame_txctl);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

frame_len

the length of the frame that is going to be protected by the CTS-to-self.

frame_txctl

struct ieee80211_tx_info of the frame.

Description

If the CTS-to-self is generated in firmware, but the host system must provide the duration field, the
low-level driver uses this function to receive the duration field value in little-endian byteorder.

ieee80211_generic_frame_duration

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_generic_frame_duration — Calculate the duration field for a frame

36

Chapter 4. Receive and transmit processing

Synopsis

__le16 ieee80211_generic_frame_duration (struct ieee80211_hw * hw, struct
ieee80211_vif * vif, size_t frame_len, struct ieee80211_rate * rate);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

frame_len

the length of the frame.

rate

the rate at which the frame is going to be transmitted.

Description

Calculate the duration field of some generic frame, given its length and transmission rate (in 100kbps).

ieee80211_get_hdrlen_from_skb

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_get_hdrlen_from_skb — get header length from data

Synopsis

unsigned int ieee80211_get_hdrlen_from_skb (const struct sk_buff * skb);

37

Chapter 4. Receive and transmit processing

Arguments

skb

the frame

Description

Given an skb with a raw 802.11 header at the data pointer this function returns the 802.11 header length
in bytes (not including encryption headers). If the data in the sk_buff is too short to contain a valid
802.11 header the function returns 0.

ieee80211_hdrlen

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_hdrlen — get header length in bytes from frame control

Synopsis

unsigned int ieee80211_hdrlen (__le16 fc);

Arguments

fc

frame control field in little-endian format

38

Chapter 4. Receive and transmit processing

ieee80211_wake_queue

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_wake_queue — wake specific queue

Synopsis

void ieee80211_wake_queue (struct ieee80211_hw * hw, int queue);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

queue

queue number (counted from zero).

Description

Drivers should use this function instead of netif_wake_queue.

ieee80211_stop_queue

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_stop_queue — stop specific queue

39

Chapter 4. Receive and transmit processing

Synopsis

void ieee80211_stop_queue (struct ieee80211_hw * hw, int queue);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

queue

queue number (counted from zero).

Description

Drivers should use this function instead of netif_stop_queue.

ieee80211_wake_queues

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_wake_queues — wake all queues

Synopsis

void ieee80211_wake_queues (struct ieee80211_hw * hw);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

40

Chapter 4. Receive and transmit processing

Description

Drivers should use this function instead of netif_wake_queue.

ieee80211_stop_queues

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_stop_queues — stop all queues

Synopsis

void ieee80211_stop_queues (struct ieee80211_hw * hw);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

Description

Drivers should use this function instead of netif_stop_queue.

41

Chapter 5. Frame filtering

mac80211 requires to see many management frames for proper operation, and users may want to see
many more frames when in monitor mode. However, for best CPU usage and power consumption,
having as few frames as possible percolate through the stack is desirable. Hence, the hardware should
filter as much as possible.

To achieve this, mac80211 uses filter flags (see below) to tell the driver’s configure_filter function
which frames should be passed to mac80211 and which should be filtered out.

The configure_filter callback is invoked with the parameters mc_count and mc_list for the
combined multicast address list of all virtual interfaces, changed_flags telling which flags were
changed and total_flags with the new flag states.

If your device has no multicast address filters your driver will need to check both the FIF_ALLMULTI
flag and the mc_count parameter to see whether multicast frames should be accepted or dropped.

All unsupported flags in total_flags must be cleared. Hardware does not support a flag if it is
incapable of _passing_ the frame to the stack. Otherwise the driver must ignore the flag, but not clear it.
You must _only_ clear the flag (announce no support for the flag to mac80211) if you are not able to pass
the packet type to the stack (so the hardware always filters it). So for example, you should clear
FIF_CONTROL, if your hardware always filters control frames. If your hardware always passes control
frames to the kernel and is incapable of filtering them, you do _not_ clear the FIF_CONTROL flag. This
rule applies to all other FIF flags as well.

enum ieee80211_filter_flags

LINUX
Kernel Hackers ManualApril 2009

Name
enum ieee80211_filter_flags — hardware filter flags

Synopsis
enum ieee80211_filter_flags {
FIF_PROMISC_IN_BSS,
FIF_ALLMULTI,
FIF_FCSFAIL,
FIF_PLCPFAIL,

42

Chapter 5. Frame filtering

FIF_BCN_PRBRESP_PROMISC,
FIF_CONTROL,
FIF_OTHER_BSS

};

Constants

FIF_PROMISC_IN_BSS

promiscuous mode within your BSS, think of the BSS as your network segment and then this
corresponds to the regular ethernet device promiscuous mode.

FIF_ALLMULTI

pass all multicast frames, this is used if requested by the user or if the hardware is not capable of
filtering by multicast address.

FIF_FCSFAIL

pass frames with failed FCS (but you need to set the RX_FLAG_FAILED_FCS_CRC for them)

FIF_PLCPFAIL

pass frames with failed PLCP CRC (but you need to set the RX_FLAG_FAILED_PLCP_CRC for them

FIF_BCN_PRBRESP_PROMISC

This flag is set during scanning to indicate to the hardware that it should not filter beacons or probe
responses by BSSID. Filtering them can greatly reduce the amount of processing mac80211 needs
to do and the amount of CPU wakeups, so you should honour this flag if possible.

FIF_CONTROL

pass control frames, if PROMISC_IN_BSS is not set then only those addressed to this station

FIF_OTHER_BSS

pass frames destined to other BSSes

Frame filtering

These flags determine what the filter in hardware should be programmed to let through and what should
not be passed to the stack. It is always safe to pass more frames than requested, but this has negative
impact on power consumption.

43

II. Advanced driver interface
Information contained within this part of the book is of interest only for advanced interaction of
mac80211 with drivers to exploit more hardware capabilities and improve performance.

Chapter 6. Hardware crypto acceleration

mac80211 is capable of taking advantage of many hardware acceleration designs for encryption and
decryption operations.

The set_key callback in the struct ieee80211_ops for a given device is called to enable hardware
acceleration of encryption and decryption. The callback takes an address parameter that will be the
broadcast address for default keys, the other station’s hardware address for individual keys or the zero
address for keys that will be used only for transmission. Multiple transmission keys with the same key
index may be used when VLANs are configured for an access point.

The local_address parameter will always be set to our own address, this is only relevant if you
support multiple local addresses.

When transmitting, the TX control data will use the hw_key_idx selected by the driver by modifying
the struct ieee80211_key_conf pointed to by the key parameter to the set_key function.

The set_key call for the SET_KEY command should return 0 if the key is now in use, -EOPNOTSUPP or
-ENOSPC if it couldn’t be added; if you return 0 then hw_key_idx must be assigned to the hardware key
index, you are free to use the full u8 range.

When the cmd is DISABLE_KEY then it must succeed.

Note that it is permissible to not decrypt a frame even if a key for it has been uploaded to hardware, the
stack will not make any decision based on whether a key has been uploaded or not but rather based on
the receive flags.

The struct ieee80211_key_conf structure pointed to by the key parameter is guaranteed to be valid until
another call to set_key removes it, but it can only be used as a cookie to differentiate keys.

In TKIP some HW need to be provided a phase 1 key, for RX decryption acceleration (i.e. iwlwifi).
Those drivers should provide update_tkip_key handler. The update_tkip_key call updates the driver
with the new phase 1 key. This happens everytime the iv16 wraps around (every 65536 packets). The
set_key call will happen only once for each key (unless the AP did rekeying), it will not include a valid
phase 1 key. The valid phase 1 key is provided by update_tkip_key only. The trigger that makes
mac80211 call this handler is software decryption with wrap around of iv16.

45

Chapter 6. Hardware crypto acceleration

enum set_key_cmd

LINUX
Kernel Hackers ManualApril 2009

Name
enum set_key_cmd — key command

Synopsis
enum set_key_cmd {
SET_KEY,
DISABLE_KEY

};

Constants

SET_KEY

a key is set

DISABLE_KEY

a key must be disabled

Description

Used with the set_key callback in struct ieee80211_ops, this indicates whether a key is being removed
or added.

struct ieee80211_key_conf

LINUX

46

Chapter 6. Hardware crypto acceleration

Kernel Hackers ManualApril 2009

Name
struct ieee80211_key_conf — key information

Synopsis
struct ieee80211_key_conf {
enum ieee80211_key_alg alg;
u8 icv_len;
u8 iv_len;
u8 hw_key_idx;
u8 flags;
s8 keyidx;
u8 keylen;
u8 key[0];

};

Members

alg

The key algorithm.

icv_len

FIXME

iv_len

FIXME

hw_key_idx

To be set by the driver, this is the key index the driver wants to be given when a frame is transmitted
and needs to be encrypted in hardware.

flags

key flags, see enum ieee80211_key_flags.

keyidx

the key index (0-3)

keylen

key material length

47

Chapter 6. Hardware crypto acceleration

key[0]

key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)

Description

This key information is given by mac80211 to the driver by the set_key callback in struct
ieee80211_ops.

data block

- Temporal Encryption Key (128 bits) - Temporal Authenticator Tx MIC Key (64 bits) - Temporal
Authenticator Rx MIC Key (64 bits)

enum ieee80211_key_alg

LINUX
Kernel Hackers ManualApril 2009

Name
enum ieee80211_key_alg — key algorithm

Synopsis
enum ieee80211_key_alg {
ALG_WEP,
ALG_TKIP,
ALG_CCMP

};

Constants

ALG_WEP

WEP40 or WEP104

48

Chapter 6. Hardware crypto acceleration

ALG_TKIP

TKIP

ALG_CCMP

CCMP (AES)

enum ieee80211_key_flags

LINUX
Kernel Hackers ManualApril 2009

Name
enum ieee80211_key_flags — key flags

Synopsis
enum ieee80211_key_flags {
IEEE80211_KEY_FLAG_WMM_STA,
IEEE80211_KEY_FLAG_GENERATE_IV,
IEEE80211_KEY_FLAG_GENERATE_MMIC,
IEEE80211_KEY_FLAG_PAIRWISE

};

Constants

IEEE80211_KEY_FLAG_WMM_STA

Set by mac80211, this flag indicates that the STA this key will be used with could be using QoS.

IEEE80211_KEY_FLAG_GENERATE_IV

This flag should be set by the driver to indicate that it requires IV generation for this particular key.

IEEE80211_KEY_FLAG_GENERATE_MMIC

This flag should be set by the driver for a TKIP key if it requires Michael MIC generation in
software.

IEEE80211_KEY_FLAG_PAIRWISE

Set by mac80211, this flag indicates that the key is pairwise rather then a shared key.

49

Chapter 6. Hardware crypto acceleration

Description

These flags are used for communication about keys between the driver and mac80211, with the flags
parameter of struct ieee80211_key_conf.

50

Chapter 7. Multiple queues and QoS support

TBD

struct ieee80211_tx_queue_params

LINUX
Kernel Hackers ManualApril 2009

Name
struct ieee80211_tx_queue_params — transmit queue configuration

Synopsis
struct ieee80211_tx_queue_params {
u16 txop;
u16 cw_min;
u16 cw_max;
u8 aifs;

};

Members

txop

maximum burst time in units of 32 usecs, 0 meaning disabled

cw_min

minimum contention window [a value of the form 2^n-1 in the range 1..32767]

cw_max

maximum contention window [like cw_min]

aifs

arbitration interframe space [0..255]

Description

51

Chapter 7. Multiple queues and QoS support

The information provided in this structure is required for QoS transmit queue configuration. Cf. IEEE
802.11 7.3.2.29.

struct ieee80211_tx_queue_stats

LINUX
Kernel Hackers ManualApril 2009

Name
struct ieee80211_tx_queue_stats — transmit queue statistics

Synopsis
struct ieee80211_tx_queue_stats {
unsigned int len;
unsigned int limit;
unsigned int count;

};

Members

len

number of packets in queue

limit

queue length limit

count

number of frames sent

52

Chapter 8. Access point mode support

TBD

Some parts of the if_conf should be discussed here instead

Insert notes about VLAN interfaces with hw crypto here or in the hw crypto chapter.

ieee80211_get_buffered_bc

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_get_buffered_bc — accessing buffered broadcast and multicast frames

Synopsis

struct sk_buff * ieee80211_get_buffered_bc (struct ieee80211_hw * hw, struct
ieee80211_vif * vif);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

Description

Function for accessing buffered broadcast and multicast frames. If hardware/firmware does not
implement buffering of broadcast/multicast frames when power saving is used, 802.11 code buffers them
in the host memory. The low-level driver uses this function to fetch next buffered frame. In most cases,
this is used when generating beacon frame. This function returns a pointer to the next buffered skb or
NULL if no more buffered frames are available.

53

Chapter 8. Access point mode support

Note

buffered frames are returned only after DTIM beacon frame was generated with
ieee80211_beacon_get and the low-level driver must thus call ieee80211_beacon_get first.
ieee80211_get_buffered_bc returns NULL if the previous generated beacon was not DTIM, so the
low-level driver does not need to check for DTIM beacons separately and should be able to use common
code for all beacons.

ieee80211_beacon_get

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_beacon_get — beacon generation function

Synopsis

struct sk_buff * ieee80211_beacon_get (struct ieee80211_hw * hw, struct
ieee80211_vif * vif);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

Description

If the beacon frames are generated by the host system (i.e., not in hardware/firmware), the low-level
driver uses this function to receive the next beacon frame from the 802.11 code. The low-level is
responsible for calling this function before beacon data is needed (e.g., based on hardware interrupt).
Returned skb is used only once and low-level driver is responsible for freeing it.

54

Chapter 8. Access point mode support

55

Chapter 9. Supporting multiple virtual
interfaces

TBD

Note: WDS with identical MAC address should almost always be OK

Insert notes about having multiple virtual interfaces with different MAC addresses here, note which
configurations are supported by mac80211, add notes about supporting hw crypto with it.

56

Chapter 10. Hardware scan offload

TBD

ieee80211_scan_completed

LINUX
Kernel Hackers ManualApril 2009

Name
ieee80211_scan_completed — completed hardware scan

Synopsis

void ieee80211_scan_completed (struct ieee80211_hw * hw);

Arguments

hw

the hardware that finished the scan

Description

When hardware scan offload is used (i.e. the hw_scan callback is assigned) this function needs to be
called by the driver to notify mac80211 that the scan finished.

57

III. Rate control interface
TBD

This part of the book describes the rate control algorithm interface and how it relates to mac80211 and
drivers.

Chapter 11. dummy chapter

TBD

59

IV. Internals
TBD

This part of the book describes mac80211 internals.

Chapter 12. Key handling

12.1. Key handling basics

Key handling in mac80211 is done based on per-interface (sub_if_data) keys and per-station keys. Since
each station belongs to an interface, each station key also belongs to that interface.

Hardware acceleration is done on a best-effort basis, for each key that is eligible the hardware is asked to
enable that key but if it cannot do that they key is simply kept for software encryption. There is currently
no way of knowing this except by looking into debugfs.

All key operations are protected internally so you can call them at any time.

Within mac80211, key references are, just as STA structure references, protected by RCU. Note,
however, that some things are unprotected, namely the key->sta dereferences within the hardware
acceleration functions. This means that sta_info_destroy must flush the key todo list.

All the direct key list manipulation functions must not sleep because they can operate on STA info structs
that are protected by RCU.

12.2. MORE TBD

TBD

61

Chapter 13. Receive processing

TBD

62

Chapter 14. Transmit processing

TBD

63

Chapter 15. Station info handling

15.1. Programming information

struct sta_info

LINUX
Kernel Hackers ManualApril 2009

Name
struct sta_info — STA information

Synopsis
struct sta_info {
struct list_head list;
struct sta_info * hnext;
struct ieee80211_local * local;
struct ieee80211_sub_if_data * sdata;
struct ieee80211_key * key;
struct rate_control_ref * rate_ctrl;
void * rate_ctrl_priv;
spinlock_t lock;
spinlock_t flaglock;
u16 listen_interval;
u8 pin_status;
u32 flags;
struct sk_buff_head ps_tx_buf;
struct sk_buff_head tx_filtered;
unsigned long rx_packets;
unsigned long rx_bytes;
unsigned long wep_weak_iv_count;
unsigned long last_rx;
unsigned long num_duplicates;
unsigned long rx_fragments;
unsigned long rx_dropped;
int last_signal;
int last_qual;
int last_noise;
__le16 last_seq_ctrl[NUM_RX_DATA_QUEUES];
unsigned long tx_filtered_count;
unsigned long tx_retry_failed;
unsigned long tx_retry_count;
unsigned int fail_avg;
unsigned long tx_packets;

64

Chapter 15. Station info handling

unsigned long tx_bytes;
unsigned long tx_fragments;
struct ieee80211_tx_rate last_tx_rate;
u16 tid_seq[IEEE80211_QOS_CTL_TID_MASK + 1];
struct sta_ampdu_mlme ampdu_mlme;
u8 timer_to_tid[STA_TID_NUM];
u8 tid_to_tx_q[STA_TID_NUM];

#ifdef CONFIG_MAC80211_MESH
__le16 llid;
__le16 plid;
__le16 reason;
u8 plink_retries;
bool ignore_plink_timer;
enum plink_state plink_state;
u32 plink_timeout;
struct timer_list plink_timer;

#endif
#ifdef CONFIG_MAC80211_DEBUGFS
struct sta_info_debugfsdentries debugfs;

#endif
struct ieee80211_sta sta;

};

Members

list

global linked list entry

hnext

hash table linked list pointer

local

pointer to the global information

sdata

virtual interface this station belongs to

key

peer key negotiated with this station, if any

rate_ctrl

rate control algorithm reference

rate_ctrl_priv

rate control private per-STA pointer

65

Chapter 15. Station info handling

lock

used for locking all fields that require locking, see comments in the header file.

flaglock

spinlock for flags accesses

listen_interval

listen interval of this station, when we’re acting as AP

pin_status

used internally for pinning a STA struct into memory

flags

STA flags, see enum ieee80211_sta_info_flags

ps_tx_buf

buffer of frames to transmit to this station when it leaves power saving state

tx_filtered

buffer of frames we already tried to transmit but were filtered by hardware due to STA having
entered power saving state

rx_packets

Number of MSDUs received from this STA

rx_bytes

Number of bytes received from this STA

wep_weak_iv_count

number of weak WEP IVs received from this station

last_rx

time (in jiffies) when last frame was received from this STA

num_duplicates

number of duplicate frames received from this STA

rx_fragments

number of received MPDUs

rx_dropped

number of dropped MPDUs from this STA

last_signal

signal of last received frame from this STA

66

Chapter 15. Station info handling

last_qual

qual of last received frame from this STA

last_noise

noise of last received frame from this STA

last_seq_ctrl[NUM_RX_DATA_QUEUES]

last received seq/frag number from this STA (per RX queue)

tx_filtered_count

number of frames the hardware filtered for this STA

tx_retry_failed

number of frames that failed retry

tx_retry_count

total number of retries for frames to this STA

fail_avg

moving percentage of failed MSDUs

tx_packets

number of RX/TX MSDUs

tx_bytes

number of bytes transmitted to this STA

tx_fragments

number of transmitted MPDUs

last_tx_rate

rate used for last transmit, to report to userspace as “the” transmit rate

tid_seq[IEEE80211_QOS_CTL_TID_MASK + 1]

per-TID sequence numbers for sending to this STA

ampdu_mlme

A-MPDU state machine state

timer_to_tid[STA_TID_NUM]

identity mapping to ID timers

tid_to_tx_q[STA_TID_NUM]

map tid to tx queue

67

Chapter 15. Station info handling

llid

Local link ID

plid

Peer link ID

reason

Cancel reason on PLINK_HOLDING state

plink_retries

Retries in establishment

ignore_plink_timer

ignore the peer-link timer (used internally)

plink_state

peer link state

plink_timeout

timeout of peer link

plink_timer

peer link watch timer

debugfs

debug filesystem info

sta

station information we share with the driver

Description

This structure collects information about a station that mac80211 is communicating with.

enum ieee80211_sta_info_flags

LINUX

68

Chapter 15. Station info handling

Kernel Hackers ManualApril 2009

Name
enum ieee80211_sta_info_flags — Stations flags

Synopsis
enum ieee80211_sta_info_flags {
WLAN_STA_AUTH,
WLAN_STA_ASSOC,
WLAN_STA_PS,
WLAN_STA_AUTHORIZED,
WLAN_STA_SHORT_PREAMBLE,
WLAN_STA_ASSOC_AP,
WLAN_STA_WME,
WLAN_STA_WDS,
WLAN_STA_PSPOLL,
WLAN_STA_CLEAR_PS_FILT

};

Constants

WLAN_STA_AUTH

Station is authenticated.

WLAN_STA_ASSOC

Station is associated.

WLAN_STA_PS

Station is in power-save mode

WLAN_STA_AUTHORIZED

Station is authorized to send/receive traffic. This bit is always checked so needs to be enabled for all
stations when virtual port control is not in use.

WLAN_STA_SHORT_PREAMBLE

Station is capable of receiving short-preamble frames.

WLAN_STA_ASSOC_AP

We’re associated to that station, it is an AP.

WLAN_STA_WME

Station is a QoS-STA.

69

Chapter 15. Station info handling

WLAN_STA_WDS

Station is one of our WDS peers.

WLAN_STA_PSPOLL

Station has just PS-polled us.

WLAN_STA_CLEAR_PS_FILT

Clear PS filter in hardware (using the IEEE80211_TX_CTL_CLEAR_PS_FILT control flag) when
the next frame to this station is transmitted.

Description

These flags are used with struct sta_info’s flags member.

15.2. STA information lifetime rules

STA info structures (struct sta_info) are managed in a hash table for faster lookup and a list for iteration.
They are managed using RCU, i.e. access to the list and hash table is protected by RCU.

Upon allocating a STA info structure with sta_info_alloc, the caller owns that structure. It must then
either destroy it using sta_info_destroy (which is pretty useless) or insert it into the hash table using
sta_info_insert which demotes the reference from ownership to a regular RCU-protected reference;
if the function is called without protection by an RCU critical section the reference is instantly
invalidated. Note that the caller may not do much with the STA info before inserting it, in particular, it
may not start any mesh peer link management or add encryption keys.

When the insertion fails (sta_info_insert) returns non-zero), the structure will have been freed by
sta_info_insert!

Because there are debugfs entries for each station, and adding those must be able to sleep, it is also
possible to “pin” a station entry, that means it can be removed from the hash table but not be freed. See
the comment in __sta_info_unlink for more information, this is an internal capability only.

In order to remove a STA info structure, the caller needs to first unlink it (sta_info_unlink) from the
list and hash tables and then destroy it; sta_info_destroy will wait for an RCU grace period to elapse

70

Chapter 15. Station info handling

before actually freeing it. Due to the pinning and the possibility of multiple callers trying to remove the
same STA info at the same time, sta_info_unlink can clear the STA info pointer it is passed to
indicate that the STA info is owned by somebody else now.

If sta_info_unlink did not clear the pointer then the caller owns the STA info structure now and is
responsible of destroying it with a call to sta_info_destroy.

In all other cases, there is no concept of ownership on a STA entry, each structure is owned by the global
hash table/list until it is removed. All users of the structure need to be RCU protected so that the structure
won’t be freed before they are done using it.

71

Chapter 16. Synchronisation

TBD

Locking, lots of RCU

72

	The mac80211 subsystem for kernel developers
	Table of Contents
	I. The basic mac80211 driver interface
	Chapter 1. Basic hardware handling
	struct ieee80211hw
	LINUX
	Name
	Synopsis
	Members
	Description
	NOTICE

	enum ieee80211hwflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	SETIEEE80211DEV
	LINUX
	Name
	Synopsis
	Arguments

	SETIEEE80211PERMADDR
	LINUX
	Name
	Synopsis
	Arguments

	struct ieee80211ops
	LINUX
	Name
	Synopsis
	Members
	Description

	ieee80211allochw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211registerhw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211gettxledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211getrxledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211getassocledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211getradioledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211unregisterhw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211freehw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 2. PHY configuration
	struct ieee80211conf
	LINUX
	Name
	Synopsis
	Members
	Description

	enum ieee80211confflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	Chapter 3. Virtual interfaces
	struct ieee80211ifinitconf
	LINUX
	Name
	Synopsis
	Members
	Description

	struct ieee80211ifconf
	LINUX
	Name
	Synopsis
	Members
	Description

	Chapter 4. Receive and transmit processing
	4.1. what should be here
	4.2. Frame format
	4.3. Alignment issues
	4.4. Calling into mac80211 from interrupts
	4.5. functions/definitions
	struct ieee80211rxstatus
	LINUX
	Name
	Synopsis
	Members
	Description

	enum mac80211rxflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	struct ieee80211txinfo
	LINUX
	Name
	Synopsis
	Members
	Description

	ieee80211rx
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211rxirqsafe
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211txstatus
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211txstatusirqsafe
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211rtsget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211rtsduration
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211ctstoselfget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211ctstoselfduration
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211genericframeduration
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211gethdrlenfromskb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211hdrlen
	LINUX
	Name
	Synopsis
	Arguments

	ieee80211wakequeue
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211stopqueue
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211wakequeues
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211stopqueues
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 5. Frame filtering
	enum ieee80211filterflags
	LINUX
	Name
	Synopsis
	Constants
	Frame filtering

	II. Advanced driver interface
	Chapter 6. Hardware crypto acceleration
	enum setkeycmd
	LINUX
	Name
	Synopsis
	Constants
	Description

	struct ieee80211keyconf
	LINUX
	Name
	Synopsis
	Members
	Description
	data block

	enum ieee80211keyalg
	LINUX
	Name
	Synopsis
	Constants

	enum ieee80211keyflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	Chapter 7. Multiple queues and QoS support
	struct ieee80211txqueueparams
	LINUX
	Name
	Synopsis
	Members
	Description

	struct ieee80211txqueuestats
	LINUX
	Name
	Synopsis
	Members

	Chapter 8. Access point mode support
	ieee80211getbufferedbc
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Note

	ieee80211beaconget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 9. Supporting multiple virtual interfaces
	Chapter 10. Hardware scan offload
	ieee80211scancompleted
	LINUX
	Name
	Synopsis
	Arguments
	Description

	III. Rate control interface
	Chapter 11. dummy chapter
	IV. Internals
	Chapter 12. Key handling
	12.1. Key handling basics
	12.2. MORE TBD

	Chapter 13. Receive processing
	Chapter 14. Transmit processing
	Chapter 15. Station info handling
	15.1. Programming information
	struct stainfo
	LINUX
	Name
	Synopsis
	Members
	Description

	enum ieee80211stainfoflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	15.2. STA information lifetime rules

	Chapter 16. Synchronisation

