
Writing USB Device Drivers

Greg Kroah-Hartman
greg@kroah.com

Writing USB Device Drivers
by Greg Kroah-Hartman

Copyright © 2001-2002 Greg Kroah-Hartman

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

This documentation is based on an article published in Linux Journal Magazine, October 2001, Issue 90.

Table of Contents
1. Introduction..1
2. Linux USB Basics...2
3. Device operation...4
4. Isochronous Data ...7
5. Conclusion ..8
6. Resources ..9

iii

Chapter 1. Introduction

The Linux USB subsystem has grown from supporting only two different types of devices in the 2.2.7
kernel (mice and keyboards), to over 20 different types of devices in the 2.4 kernel. Linux currently
supports almost all USB class devices (standard types of devices like keyboards, mice, modems, printers
and speakers) and an ever-growing number of vendor-specific devices (such as USB to serial converters,
digital cameras, Ethernet devices and MP3 players). For a full list of the different USB devices currently
supported, see Resources.

The remaining kinds of USB devices that do not have support on Linux are almost all vendor-specific
devices. Each vendor decides to implement a custom protocol to talk to their device, so a custom driver
usually needs to be created. Some vendors are open with their USB protocols and help with the creation
of Linux drivers, while others do not publish them, and developers are forced to reverse-engineer. See
Resources for some links to handy reverse-engineering tools.

Because each different protocol causes a new driver to be created, I have written a generic USB driver
skeleton, modeled after the pci-skeleton.c file in the kernel source tree upon which many PCI network
drivers have been based. This USB skeleton can be found at drivers/usb/usb-skeleton.c in the kernel
source tree. In this article I will walk through the basics of the skeleton driver, explaining the different
pieces and what needs to be done to customize it to your specific device.

1

Chapter 2. Linux USB Basics

If you are going to write a Linux USB driver, please become familiar with the USB protocol
specification. It can be found, along with many other useful documents, at the USB home page (see
Resources). An excellent introduction to the Linux USB subsystem can be found at the USB Working
Devices List (see Resources). It explains how the Linux USB subsystem is structured and introduces the
reader to the concept of USB urbs (USB Request Blocks), which are essential to USB drivers.

The first thing a Linux USB driver needs to do is register itself with the Linux USB subsystem, giving it
some information about which devices the driver supports and which functions to call when a device
supported by the driver is inserted or removed from the system. All of this information is passed to the
USB subsystem in the usb_driver structure. The skeleton driver declares a usb_driver as:

static struct usb_driver skel_driver = {
.name = "skeleton",
.probe = skel_probe,
.disconnect = skel_disconnect,
.fops = &skel_fops,
.minor = USB_SKEL_MINOR_BASE,
.id_table = skel_table,

};

The variable name is a string that describes the driver. It is used in informational messages printed to the
system log. The probe and disconnect function pointers are called when a device that matches the
information provided in the id_table variable is either seen or removed.

The fops and minor variables are optional. Most USB drivers hook into another kernel subsystem, such
as the SCSI, network or TTY subsystem. These types of drivers register themselves with the other kernel
subsystem, and any user-space interactions are provided through that interface. But for drivers that do not
have a matching kernel subsystem, such as MP3 players or scanners, a method of interacting with user
space is needed. The USB subsystem provides a way to register a minor device number and a set of
file_operations function pointers that enable this user-space interaction. The skeleton driver needs this
kind of interface, so it provides a minor starting number and a pointer to its file_operations functions.

The USB driver is then registered with a call to usb_register, usually in the driver’s init function, as
shown here:

static int __init usb_skel_init(void)
{

int result;

/* register this driver with the USB subsystem */
result = usb_register(&skel_driver);
if (result < 0) {

err("usb_register failed for the "__FILE__ "driver."

2

Chapter 2. Linux USB Basics

"Error number %d", result);
return -1;

}

return 0;
}
module_init(usb_skel_init);

When the driver is unloaded from the system, it needs to deregister itself with the USB subsystem. This
is done with the usb_deregister function:

static void __exit usb_skel_exit(void)
{

/* deregister this driver with the USB subsystem */
usb_deregister(&skel_driver);

}
module_exit(usb_skel_exit);

To enable the linux-hotplug system to load the driver automatically when the device is plugged in, you
need to create a MODULE_DEVICE_TABLE. The following code tells the hotplug scripts that this
module supports a single device with a specific vendor and product ID:

/* table of devices that work with this driver */
static struct usb_device_id skel_table [] = {

{ USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) },
{ } /* Terminating entry */

};
MODULE_DEVICE_TABLE (usb, skel_table);

There are other macros that can be used in describing a usb_device_id for drivers that support a whole
class of USB drivers. See usb.h for more information on this.

3

Chapter 3. Device operation

When a device is plugged into the USB bus that matches the device ID pattern that your driver registered
with the USB core, the probe function is called. The usb_device structure, interface number and the
interface ID are passed to the function:

static int skel_probe(struct usb_interface *interface,
const struct usb_device_id *id)

The driver now needs to verify that this device is actually one that it can accept. If so, it returns 0. If not,
or if any error occurs during initialization, an errorcode (such as -ENOMEM or -ENODEV) is returned from
the probe function.

In the skeleton driver, we determine what end points are marked as bulk-in and bulk-out. We create
buffers to hold the data that will be sent and received from the device, and a USB urb to write data to the
device is initialized.

Conversely, when the device is removed from the USB bus, the disconnect function is called with the
device pointer. The driver needs to clean any private data that has been allocated at this time and to shut
down any pending urbs that are in the USB system.

Now that the device is plugged into the system and the driver is bound to the device, any of the functions
in the file_operations structure that were passed to the USB subsystem will be called from a user
program trying to talk to the device. The first function called will be open, as the program tries to open
the device for I/O. We increment our private usage count and save a pointer to our internal structure in
the file structure. This is done so that future calls to file operations will enable the driver to determine
which device the user is addressing. All of this is done with the following code:

/* increment our usage count for the module */
++skel->open_count;

/* save our object in the file’s private structure */
file->private_data = dev;

After the open function is called, the read and write functions are called to receive and send data to the
device. In the skel_write function, we receive a pointer to some data that the user wants to send to the
device and the size of the data. The function determines how much data it can send to the device based
on the size of the write urb it has created (this size depends on the size of the bulk out end point that the
device has). Then it copies the data from user space to kernel space, points the urb to the data and
submits the urb to the USB subsystem. This can be seen in the following code:

/* we can only write as much as 1 urb will hold */
bytes_written = (count > skel->bulk_out_size) ? skel->bulk_out_size : count;

4

Chapter 3. Device operation

/* copy the data from user space into our urb */
copy_from_user(skel->write_urb->transfer_buffer, buffer, bytes_written);

/* set up our urb */
usb_fill_bulk_urb(skel->write_urb,

skel->dev,
usb_sndbulkpipe(skel->dev, skel->bulk_out_endpointAddr),
skel->write_urb->transfer_buffer,
bytes_written,
skel_write_bulk_callback,
skel);

/* send the data out the bulk port */
result = usb_submit_urb(skel->write_urb);
if (result) {

err("Failed submitting write urb, error %d", result);
}

When the write urb is filled up with the proper information using the usb_fill_bulk_urb function, we
point the urb’s completion callback to call our own skel_write_bulk_callback function. This function is
called when the urb is finished by the USB subsystem. The callback function is called in interrupt
context, so caution must be taken not to do very much processing at that time. Our implementation of
skel_write_bulk_callback merely reports if the urb was completed successfully or not and then returns.

The read function works a bit differently from the write function in that we do not use an urb to transfer
data from the device to the driver. Instead we call the usb_bulk_msg function, which can be used to send
or receive data from a device without having to create urbs and handle urb completion callback
functions. We call the usb_bulk_msg function, giving it a buffer into which to place any data received
from the device and a timeout value. If the timeout period expires without receiving any data from the
device, the function will fail and return an error message. This can be shown with the following code:

/* do an immediate bulk read to get data from the device */
retval = usb_bulk_msg (skel->dev,

usb_rcvbulkpipe (skel->dev,
skel->bulk_in_endpointAddr),
skel->bulk_in_buffer,
skel->bulk_in_size,
&count, HZ*10);

/* if the read was successful, copy the data to user space */
if (!retval) {

if (copy_to_user (buffer, skel->bulk_in_buffer, count))
retval = -EFAULT;

else
retval = count;

}

5

Chapter 3. Device operation

The usb_bulk_msg function can be very useful for doing single reads or writes to a device; however, if
you need to read or write constantly to a device, it is recommended to set up your own urbs and submit
them to the USB subsystem.

When the user program releases the file handle that it has been using to talk to the device, the release
function in the driver is called. In this function we decrement our private usage count and wait for
possible pending writes:

/* decrement our usage count for the device */
--skel->open_count;

One of the more difficult problems that USB drivers must be able to handle smoothly is the fact that the
USB device may be removed from the system at any point in time, even if a program is currently talking
to it. It needs to be able to shut down any current reads and writes and notify the user-space programs
that the device is no longer there. The following code (function skel_delete) is an example of how to
do this:

static inline void skel_delete (struct usb_skel *dev)
{

kfree (dev->bulk_in_buffer);
if (dev->bulk_out_buffer != NULL)

usb_buffer_free (dev->udev, dev->bulk_out_size,
dev->bulk_out_buffer,
dev->write_urb->transfer_dma);

usb_free_urb (dev->write_urb);
kfree (dev);

}

If a program currently has an open handle to the device, we reset the flag device_present. For every
read, write, release and other functions that expect a device to be present, the driver first checks this flag
to see if the device is still present. If not, it releases that the device has disappeared, and a -ENODEV
error is returned to the user-space program. When the release function is eventually called, it determines
if there is no device and if not, it does the cleanup that the skel_disconnect function normally does if
there are no open files on the device (see Listing 5).

6

Chapter 4. Isochronous Data

This usb-skeleton driver does not have any examples of interrupt or isochronous data being sent to or
from the device. Interrupt data is sent almost exactly as bulk data is, with a few minor exceptions.
Isochronous data works differently with continuous streams of data being sent to or from the device. The
audio and video camera drivers are very good examples of drivers that handle isochronous data and will
be useful if you also need to do this.

7

Chapter 5. Conclusion

Writing Linux USB device drivers is not a difficult task as the usb-skeleton driver shows. This driver,
combined with the other current USB drivers, should provide enough examples to help a beginning
author create a working driver in a minimal amount of time. The linux-usb-devel mailing list archives
also contain a lot of helpful information.

8

Chapter 6. Resources

The Linux USB Project: http://www.linux-usb.org/ (http://www.linux-usb.org)

Linux Hotplug Project: http://linux-hotplug.sourceforge.net/ (http://linux-hotplug.sourceforge.net)

Linux USB Working Devices List: http://www.qbik.ch/usb/devices/ (http://www.qbik.ch/usb/devices)

linux-usb-devel Mailing List Archives: http://marc.theaimsgroup.com/?l=linux-usb-devel

Programming Guide for Linux USB Device Drivers: http://usb.cs.tum.edu/usbdoc

USB Home Page: http://www.usb.org

9

	Writing USB Device Drivers
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Linux USB Basics
	Chapter 3. Device operation
	Chapter 4. Isochronous Data
	Chapter 5. Conclusion
	Chapter 6. Resources

