
Bus-Independent Device Accesses

Matthew Wilcox
matthew@wil.cx

Alan Cox
alan@lxorguk.ukuu.org.uk

Bus-Independent Device Accesses
by Matthew Wilcox

by Alan Cox

Copyright © 2001 Matthew Wilcox

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Introduction..1
2. Known Bugs And Assumptions ..2
3. Memory Mapped IO..3

3.1. Getting Access to the Device ..3
3.2. Accessing the device ...3

4. Port Space Accesses ...6
4.1. Port Space Explained ..6
4.2. Accessing Port Space ..6

5. Public Functions Provided ..7
virt_to_phys ...7
phys_to_virt ...7
ioremap_nocache ...8
pci_iomap...9

iii

Chapter 1. Introduction

Linux provides an API which abstracts performing IO across all busses and devices, allowing device
drivers to be written independently of bus type.

1

Chapter 2. Known Bugs And Assumptions

None.

2

Chapter 3. Memory Mapped IO

3.1. Getting Access to the Device

The most widely supported form of IO is memory mapped IO. That is, a part of the CPU’s address space
is interpreted not as accesses to memory, but as accesses to a device. Some architectures define devices to
be at a fixed address, but most have some method of discovering devices. The PCI bus walk is a good
example of such a scheme. This document does not cover how to receive such an address, but assumes
you are starting with one. Physical addresses are of type unsigned long.

This address should not be used directly. Instead, to get an address suitable for passing to the accessor
functions described below, you should call ioremap. An address suitable for accessing the device will
be returned to you.

After you’ve finished using the device (say, in your module’s exit routine), call iounmap in order to
return the address space to the kernel. Most architectures allocate new address space each time you call
ioremap, and they can run out unless you call iounmap.

3.2. Accessing the device

The part of the interface most used by drivers is reading and writing memory-mapped registers on the
device. Linux provides interfaces to read and write 8-bit, 16-bit, 32-bit and 64-bit quantities. Due to a
historical accident, these are named byte, word, long and quad accesses. Both read and write accesses are
supported; there is no prefetch support at this time.

The functions are named readb, readw, readl, readq, readb_relaxed, readw_relaxed,
readl_relaxed, readq_relaxed, writeb, writew, writel and writeq.

Some devices (such as framebuffers) would like to use larger transfers than 8 bytes at a time. For these
devices, the memcpy_toio, memcpy_fromio and memset_io functions are provided. Do not use
memset or memcpy on IO addresses; they are not guaranteed to copy data in order.

The read and write functions are defined to be ordered. That is the compiler is not permitted to reorder
the I/O sequence. When the ordering can be compiler optimised, you can use __readb and friends to
indicate the relaxed ordering. Use this with care.

While the basic functions are defined to be synchronous with respect to each other and ordered with
respect to each other the busses the devices sit on may themselves have asynchronicity. In particular
many authors are burned by the fact that PCI bus writes are posted asynchronously. A driver author must

3

Chapter 3. Memory Mapped IO

issue a read from the same device to ensure that writes have occurred in the specific cases the author
cares. This kind of property cannot be hidden from driver writers in the API. In some cases, the read used
to flush the device may be expected to fail (if the card is resetting, for example). In that case, the read
should be done from config space, which is guaranteed to soft-fail if the card doesn’t respond.

The following is an example of flushing a write to a device when the driver would like to ensure the
write’s effects are visible prior to continuing execution.

static inline void
qla1280_disable_intrs(struct scsi_qla_host *ha)
{
struct device_reg *reg;

reg = ha->iobase;
/* disable risc and host interrupts */
WRT_REG_WORD(®->ictrl, 0);
/*
* The following read will ensure that the above write

* has been received by the device before we return from this

* function.

*/
RD_REG_WORD(®->ictrl);
ha->flags.ints_enabled = 0;

}

In addition to write posting, on some large multiprocessing systems (e.g. SGI Challenge, Origin and
Altix machines) posted writes won’t be strongly ordered coming from different CPUs. Thus it’s
important to properly protect parts of your driver that do memory-mapped writes with locks and use the
mmiowb to make sure they arrive in the order intended. Issuing a regular readX will also ensure write
ordering, but should only be used when the driver has to be sure that the write has actually arrived at the
device (not that it’s simply ordered with respect to other writes), since a full readX is a relatively
expensive operation.

Generally, one should use mmiowb prior to releasing a spinlock that protects regions using writeb or
similar functions that aren’t surrounded by readb calls, which will ensure ordering and flushing. The
following pseudocode illustrates what might occur if write ordering isn’t guaranteed via mmiowb or one
of the readX functions.

CPU A: spin_lock_irqsave(&dev_lock, flags)
CPU A: ...
CPU A: writel(newval, ring_ptr);
CPU A: spin_unlock_irqrestore(&dev_lock, flags)

...
CPU B: spin_lock_irqsave(&dev_lock, flags)
CPU B: writel(newval2, ring_ptr);
CPU B: ...
CPU B: spin_unlock_irqrestore(&dev_lock, flags)

In the case above, newval2 could be written to ring_ptr before newval. Fixing it is easy though:

4

Chapter 3. Memory Mapped IO

CPU A: spin_lock_irqsave(&dev_lock, flags)
CPU A: ...
CPU A: writel(newval, ring_ptr);
CPU A: mmiowb(); /* ensure no other writes beat us to the device */
CPU A: spin_unlock_irqrestore(&dev_lock, flags)

...
CPU B: spin_lock_irqsave(&dev_lock, flags)
CPU B: writel(newval2, ring_ptr);
CPU B: ...
CPU B: mmiowb();
CPU B: spin_unlock_irqrestore(&dev_lock, flags)

See tg3.c for a real world example of how to use mmiowb

PCI ordering rules also guarantee that PIO read responses arrive after any outstanding DMA writes from
that bus, since for some devices the result of a readb call may signal to the driver that a DMA
transaction is complete. In many cases, however, the driver may want to indicate that the next readb call
has no relation to any previous DMA writes performed by the device. The driver can use
readb_relaxed for these cases, although only some platforms will honor the relaxed semantics. Using
the relaxed read functions will provide significant performance benefits on platforms that support it. The
qla2xxx driver provides examples of how to use readX_relaxed. In many cases, a majority of the
driver’s readX calls can safely be converted to readX_relaxed calls, since only a few will indicate or
depend on DMA completion.

5

Chapter 4. Port Space Accesses

4.1. Port Space Explained

Another form of IO commonly supported is Port Space. This is a range of addresses separate to the
normal memory address space. Access to these addresses is generally not as fast as accesses to the
memory mapped addresses, and it also has a potentially smaller address space.

Unlike memory mapped IO, no preparation is required to access port space.

4.2. Accessing Port Space

Accesses to this space are provided through a set of functions which allow 8-bit, 16-bit and 32-bit
accesses; also known as byte, word and long. These functions are inb, inw, inl, outb, outw and outl.

Some variants are provided for these functions. Some devices require that accesses to their ports are
slowed down. This functionality is provided by appending a _p to the end of the function. There are also
equivalents to memcpy. The ins and outs functions copy bytes, words or longs to the given port.

6

Chapter 5. Public Functions Provided

virt_to_phys

LINUX
Kernel Hackers ManualApril 2009

Name
virt_to_phys — map virtual addresses to physical

Synopsis

unsigned long virt_to_phys (volatile void * address);

Arguments

address

address to remap

Description

The returned physical address is the physical (CPU) mapping for the memory address given. It is only
valid to use this function on addresses directly mapped or allocated via kmalloc.

This function does not give bus mappings for DMA transfers. In almost all conceivable cases a device
driver should not be using this function

phys_to_virt

LINUX

7

Chapter 5. Public Functions Provided

Kernel Hackers ManualApril 2009

Name
phys_to_virt — map physical address to virtual

Synopsis

void * phys_to_virt (unsigned long address);

Arguments

address

address to remap

Description

The returned virtual address is a current CPU mapping for the memory address given. It is only valid to
use this function on addresses that have a kernel mapping

This function does not handle bus mappings for DMA transfers. In almost all conceivable cases a device
driver should not be using this function

ioremap_nocache

LINUX
Kernel Hackers ManualApril 2009

Name
ioremap_nocache — map bus memory into CPU space

Synopsis

void __iomem * ioremap_nocache (resource_size_t offset, unsigned long size);

8

Chapter 5. Public Functions Provided

Arguments

offset

bus address of the memory

size

size of the resource to map

Description

ioremap performs a platform specific sequence of operations to make bus memory CPU accessible via
the readb/readw/readl/writeb/ writew/writel functions and the other mmio helpers. The returned address
is not guaranteed to be usable directly as a virtual address.

If the area you are trying to map is a PCI BAR you should have a look at pci_iomap.

pci_iomap

LINUX
Kernel Hackers ManualApril 2009

Name
pci_iomap — create a virtual mapping cookie for a PCI BAR

Synopsis

void __iomem * pci_iomap (struct pci_dev * dev, int bar, unsigned long
maxlen);

9

Chapter 5. Public Functions Provided

Arguments

dev

PCI device that owns the BAR

bar

BAR number

maxlen

length of the memory to map

Description

Using this function you will get a __iomem address to your device BAR. You can access it using
ioread*() and iowrite*(). These functions hide the details if this is a MMIO or PIO address space and will
just do what you expect from them in the correct way.

maxlen specifies the maximum length to map. If you want to get access to the complete BAR without
checking for its length first, pass 0 here.

10

	BusIndependent Device Accesses
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Known Bugs And Assumptions
	Chapter 3. Memory Mapped IO
	3.1. Getting Access to the Device
	3.2. Accessing the device

	Chapter 4. Port Space Accesses
	4.1. Port Space Explained
	4.2. Accessing Port Space

	Chapter 5. Public Functions Provided
	virttophys
	LINUX
	Name
	Synopsis
	Arguments
	Description

	phystovirt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ioremapnocache
	LINUX
	Name
	Synopsis
	Arguments
	Description

	pciiomap
	LINUX
	Name
	Synopsis
	Arguments
	Description

