
Using kgdb and the kgdb Internals

Jason Wessel
jason.wessel@windriver.com

Tom Rini
trini@kernel.crashing.org

Amit S. Kale
amitkale@linsyssoft.com



Using kgdb and the kgdb Internals
by Jason Wessel

by Tom Rini

by Amit S. Kale

Copyright © 2008 Wind River Systems, Inc.
Copyright © 2004-2005 MontaVista Software, Inc.
Copyright © 2004 Amit S. Kale

This file is licensed under the terms of the GNU General Public License version 2. This program is licensed "as is" without any warranty of any

kind, whether express or implied.



Table of Contents
1. Introduction............................................................................................................................................1
2. Compiling a kernel.................................................................................................................................2
3. Enable kgdb for debugging...................................................................................................................3

3.1. Kernel parameter: kgdbwait ........................................................................................................3
3.2. Kernel parameter: kgdboc ...........................................................................................................3

3.2.1. Using kgdboc..................................................................................................................3
3.3. Kernel parameter: kgdbcon .........................................................................................................4

4. Connecting gdb ......................................................................................................................................6
5. kgdb Test Suite .......................................................................................................................................7
6. KGDB Internals .....................................................................................................................................8

6.1. Architecture Specifics .................................................................................................................8
kgdb_skipexception ..................................................................................................................9
kgdb_post_primary_code .......................................................................................................10
kgdb_disable_hw_debug ........................................................................................................11
kgdb_breakpoint .....................................................................................................................12
kgdb_arch_init ........................................................................................................................12
kgdb_arch_exit .......................................................................................................................13
pt_regs_to_gdb_regs...............................................................................................................14
sleeping_thread_to_gdb_regs .................................................................................................15
gdb_regs_to_pt_regs...............................................................................................................15
kgdb_arch_handle_exception .................................................................................................16
kgdb_roundup_cpus ...............................................................................................................17
struct kgdb_arch .....................................................................................................................18
struct kgdb_io .........................................................................................................................19

6.2. kgdboc internals ........................................................................................................................21

7. Credits...................................................................................................................................................22

iii



Chapter 1. Introduction

kgdb is a source level debugger for linux kernel. It is used along with gdb to debug a linux kernel. The
expectation is that gdb can be used to "break in" to the kernel to inspect memory, variables and look
through call stack information similar to what an application developer would use gdb for. It is possible
to place breakpoints in kernel code and perform some limited execution stepping.

Two machines are required for using kgdb. One of these machines is a development machine and the
other is a test machine. The kernel to be debugged runs on the test machine. The development machine
runs an instance of gdb against the vmlinux file which contains the symbols (not boot image such as
bzImage, zImage, uImage...). In gdb the developer specifies the connection parameters and connects to
kgdb. The type of connection a developer makes with gdb depends on the availability of kgdb I/O
modules compiled as builtin’s or kernel modules in the test machine’s kernel.
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Chapter 2. Compiling a kernel

To enable CONFIG_KGDB you should first turn on "Prompt for development and/or incomplete
code/drivers" (CONFIG_EXPERIMENTAL) in "General setup", then under the "Kernel debugging"
select "KGDB: kernel debugging with remote gdb".

It is advised, but not required that you turn on the CONFIG_FRAME_POINTER kernel option. This
option inserts code to into the compiled executable which saves the frame information in registers or on
the stack at different points which will allow a debugger such as gdb to more accurately construct stack
back traces while debugging the kernel.

If the architecture that you are using supports the kernel option CONFIG_DEBUG_RODATA, you
should consider turning it off. This option will prevent the use of software breakpoints because it marks
certain regions of the kernel’s memory space as read-only. If kgdb supports it for the architecture you are
using, you can use hardware breakpoints if you desire to run with the CONFIG_DEBUG_RODATA
option turned on, else you need to turn off this option.

Next you should choose one of more I/O drivers to interconnect debugging host and debugged target.
Early boot debugging requires a KGDB I/O driver that supports early debugging and the driver must be
built into the kernel directly. Kgdb I/O driver configuration takes place via kernel or module parameters,
see following chapter.

The kgdb test compile options are described in the kgdb test suite chapter.
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Chapter 3. Enable kgdb for debugging

In order to use kgdb you must activate it by passing configuration information to one of the kgdb I/O
drivers. If you do not pass any configuration information kgdb will not do anything at all. Kgdb will only
actively hook up to the kernel trap hooks if a kgdb I/O driver is loaded and configured. If you
unconfigure a kgdb I/O driver, kgdb will unregister all the kernel hook points.

All drivers can be reconfigured at run time, if CONFIG_SYSFS and CONFIG_MODULES are enabled,
by echo’ing a new config string to /sys/module/<driver>/parameter/<option>. The driver can
be unconfigured by passing an empty string. You cannot change the configuration while the debugger is
attached. Make sure to detach the debugger with the detach command prior to trying unconfigure a
kgdb I/O driver.

3.1. Kernel parameter: kgdbwait

The Kernel command line option kgdbwait makes kgdb wait for a debugger connection during booting
of a kernel. You can only use this option you compiled a kgdb I/O driver into the kernel and you
specified the I/O driver configuration as a kernel command line option. The kgdbwait parameter should
always follow the configuration parameter for the kgdb I/O driver in the kernel command line else the
I/O driver will not be configured prior to asking the kernel to use it to wait.

The kernel will stop and wait as early as the I/O driver and architecture will allow when you use this
option. If you build the kgdb I/O driver as a kernel module kgdbwait will not do anything.

3.2. Kernel parameter: kgdboc

The kgdboc driver was originally an abbreviation meant to stand for "kgdb over console". Kgdboc is
designed to work with a single serial port. It was meant to cover the circumstance where you wanted to
use a serial console as your primary console as well as using it to perform kernel debugging. Of course
you can also use kgdboc without assigning a console to the same port.

3.2.1. Using kgdboc

You can configure kgdboc via sysfs or a module or kernel boot line parameter depending on if you build
with CONFIG_KGDBOC as a module or built-in.

1. From the module load or build-in

kgdboc=<tty-device>,[baud]
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Chapter 3. Enable kgdb for debugging

The example here would be if your console port was typically ttyS0, you would use something like
kgdboc=ttyS0,115200 or on the ARM Versatile AB you would likely use
kgdboc=ttyAMA0,115200

2. From sysfs

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

NOTE: Kgdboc does not support interrupting the target via the gdb remote protocol. You must manually
send a sysrq-g unless you have a proxy that splits console output to a terminal problem and has a
separate port for the debugger to connect to that sends the sysrq-g for you.

When using kgdboc with no debugger proxy, you can end up connecting the debugger for one of two
entry points. If an exception occurs after you have loaded kgdboc a message should print on the console
stating it is waiting for the debugger. In case you disconnect your terminal program and then connect the
debugger in its place. If you want to interrupt the target system and forcibly enter a debug session you
have to issue a Sysrq sequence and then type the letter g. Then you disconnect the terminal session and
connect gdb. Your options if you don’t like this are to hack gdb to send the sysrq-g for you as well as on
the initial connect, or to use a debugger proxy that allows an unmodified gdb to do the debugging.

3.3. Kernel parameter: kgdbcon

Kgdb supports using the gdb serial protocol to send console messages to the debugger when the
debugger is connected and running. There are two ways to activate this feature.

1. Activate with the kernel command line option:

kgdbcon

2. Use sysfs before configuring an io driver

echo 1 > /sys/module/kgdb/parameters/kgdb_use_con

NOTE: If you do this after you configure the kgdb I/O driver, the setting will not take effect until the
next point the I/O is reconfigured.
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Chapter 3. Enable kgdb for debugging

IMPORTANT NOTE: Using this option with kgdb over the console (kgdboc) is not supported.
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Chapter 4. Connecting gdb

If you are using kgdboc, you need to have used kgdbwait as a boot argument, issued a sysrq-g, or the
system you are going to debug has already taken an exception and is waiting for the debugger to attach
before you can connect gdb.

If you are not using different kgdb I/O driver other than kgdboc, you should be able to connect and the
target will automatically respond.

Example (using a serial port):

% gdb ./vmlinux
(gdb) set remotebaud 115200
(gdb) target remote /dev/ttyS0

Example (kgdb to a terminal server on tcp port 2012):

% gdb ./vmlinux
(gdb) target remote 192.168.2.2:2012

Once connected, you can debug a kernel the way you would debug an application program.

If you are having problems connecting or something is going seriously wrong while debugging, it will
most often be the case that you want to enable gdb to be verbose about its target communications. You do
this prior to issuing the target remote command by typing in: set remote debug 1
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Chapter 5. kgdb Test Suite

When kgdb is enabled in the kernel config you can also elect to enable the config parameter
KGDB_TESTS. Turning this on will enable a special kgdb I/O module which is designed to test the kgdb
internal functions.

The kgdb tests are mainly intended for developers to test the kgdb internals as well as a tool for
developing a new kgdb architecture specific implementation. These tests are not really for end users of
the Linux kernel. The primary source of documentation would be to look in the drivers/misc/kgdbts.c file.

The kgdb test suite can also be configured at compile time to run the core set of tests by setting the kernel
config parameter KGDB_TESTS_ON_BOOT. This particular option is aimed at automated regression
testing and does not require modifying the kernel boot config arguments. If this is turned on, the kgdb
test suite can be disabled by specifying "kgdbts=" as a kernel boot argument.
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Chapter 6. KGDB Internals

6.1. Architecture Specifics

Kgdb is organized into three basic components:

1. kgdb core

The kgdb core is found in kernel/kgdb.c. It contains:

• All the logic to implement the gdb serial protocol

• A generic OS exception handler which includes sync’ing the processors into a stopped state on an
multi cpu system.

• The API to talk to the kgdb I/O drivers

• The API to make calls to the arch specific kgdb implementation

• The logic to perform safe memory reads and writes to memory while using the debugger

• A full implementation for software breakpoints unless overridden by the arch

2. kgdb arch specific implementation

This implementation is generally found in arch/*/kernel/kgdb.c. As an example,
arch/x86/kernel/kgdb.c contains the specifics to implement HW breakpoint as well as the
initialization to dynamically register and unregister for the trap handlers on this architecture. The
arch specific portion implements:

• contains an arch specific trap catcher which invokes kgdb_handle_exception() to start kgdb about
doing its work

• translation to and from gdb specific packet format to pt_regs

• Registration and unregistration of architecture specific trap hooks

• Any special exception handling and cleanup

• NMI exception handling and cleanup

• (optional)HW breakpoints

3. kgdb I/O driver

Each kgdb I/O driver has to provide an implemenation for the following:

• configuration via builtin or module
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Chapter 6. KGDB Internals

• dynamic configuration and kgdb hook registration calls

• read and write character interface

• A cleanup handler for unconfiguring from the kgdb core

• (optional) Early debug methodology

Any given kgdb I/O driver has to operate very closely with the hardware and must do it in such a
way that does not enable interrupts or change other parts of the system context without completely
restoring them. The kgdb core will repeatedly "poll" a kgdb I/O driver for characters when it needs
input. The I/O driver is expected to return immediately if there is no data available. Doing so allows
for the future possibility to touch watch dog hardware in such a way as to have a target system not
reset when these are enabled.

If you are intent on adding kgdb architecture specific support for a new architecture, the architecture
should define HAVE_ARCH_KGDB in the architecture specific Kconfig file. This will enable kgdb for the
architecture, and at that point you must create an architecture specific kgdb implementation.

There are a few flags which must be set on every architecture in their <asm/kgdb.h> file. These are:

• NUMREGBYTES: The size in bytes of all of the registers, so that we can ensure they will all fit into a
packet.

BUFMAX: The size in bytes of the buffer GDB will read into. This must be larger than
NUMREGBYTES.

CACHE_FLUSH_IS_SAFE: Set to 1 if it is always safe to call flush_cache_range or
flush_icache_range. On some architectures, these functions may not be safe to call on SMP since we
keep other CPUs in a holding pattern.

There are also the following functions for the common backend, found in kernel/kgdb.c, that must be
supplied by the architecture-specific backend unless marked as (optional), in which case a default
function maybe used if the architecture does not need to provide a specific implementation.

kgdb_skipexception

LINUX
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Chapter 6. KGDB Internals

Kernel Hackers ManualApril 2009

Name
kgdb_skipexception — (optional) exit kgdb_handle_exception early

Synopsis

int kgdb_skipexception (int exception, struct pt_regs * regs);

Arguments

exception

Exception vector number

regs

Current struct pt_regs.

Description

On some architectures it is required to skip a breakpoint exception when it occurs after a breakpoint has
been removed. This can be implemented in the architecture specific portion of for kgdb.

kgdb_post_primary_code

LINUX
Kernel Hackers ManualApril 2009

Name
kgdb_post_primary_code — (optional) Save error vector/code numbers.

Synopsis

void kgdb_post_primary_code (struct pt_regs * regs, int e_vector, int
err_code);
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Chapter 6. KGDB Internals

Arguments

regs

Original pt_regs.

e_vector

Original error vector.

err_code

Original error code.

Description

This is usually needed on architectures which support SMP and KGDB. This function is called after all
the secondary cpus have been put to a know spin state and the primary CPU has control over KGDB.

kgdb_disable_hw_debug

LINUX
Kernel Hackers ManualApril 2009

Name
kgdb_disable_hw_debug — (optional) Disable hardware debugging hook

Synopsis

void kgdb_disable_hw_debug (struct pt_regs * regs);

Arguments

regs

Current struct pt_regs.
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Chapter 6. KGDB Internals

Description

This function will be called if the particular architecture must disable hardware debugging while it is
processing gdb packets or handling exception.

kgdb_breakpoint

LINUX
Kernel Hackers ManualApril 2009

Name
kgdb_breakpoint — compiled in breakpoint

Synopsis

void kgdb_breakpoint ( void);

Arguments

void

no arguments

Description

This will be impelmented a static inline per architecture. This function is called by the kgdb core to
execute an architecture specific trap to cause kgdb to enter the exception processing.

kgdb_arch_init

LINUX

12



Chapter 6. KGDB Internals

Kernel Hackers ManualApril 2009

Name
kgdb_arch_init — Perform any architecture specific initalization.

Synopsis

int kgdb_arch_init ( void);

Arguments

void

no arguments

Description

This function will handle the initalization of any architecture specific callbacks.

kgdb_arch_exit

LINUX
Kernel Hackers ManualApril 2009

Name
kgdb_arch_exit — Perform any architecture specific uninitalization.

Synopsis

void kgdb_arch_exit ( void);
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Chapter 6. KGDB Internals

Arguments

void

no arguments

Description

This function will handle the uninitalization of any architecture specific callbacks, for dynamic
registration and unregistration.

pt_regs_to_gdb_regs

LINUX
Kernel Hackers ManualApril 2009

Name
pt_regs_to_gdb_regs — Convert ptrace regs to GDB regs

Synopsis

void pt_regs_to_gdb_regs (unsigned long * gdb_regs, struct pt_regs * regs);

Arguments

gdb_regs

A pointer to hold the registers in the order GDB wants.

regs

The struct pt_regs of the current process.
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Chapter 6. KGDB Internals

Description

Convert the pt_regs in regs into the format for registers that GDB expects, stored in gdb_regs.

sleeping_thread_to_gdb_regs

LINUX
Kernel Hackers ManualApril 2009

Name
sleeping_thread_to_gdb_regs — Convert ptrace regs to GDB regs

Synopsis

void sleeping_thread_to_gdb_regs (unsigned long * gdb_regs, struct
task_struct * p);

Arguments

gdb_regs

A pointer to hold the registers in the order GDB wants.

p

The struct task_struct of the desired process.

Description

Convert the register values of the sleeping process in p to the format that GDB expects. This function is
called when kgdb does not have access to the struct pt_regs and therefore it should fill the gdb registers
gdb_regs with what has been saved in struct thread_struct thread field during switch_to.
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Chapter 6. KGDB Internals

gdb_regs_to_pt_regs

LINUX
Kernel Hackers ManualApril 2009

Name
gdb_regs_to_pt_regs — Convert GDB regs to ptrace regs.

Synopsis

void gdb_regs_to_pt_regs (unsigned long * gdb_regs, struct pt_regs * regs);

Arguments

gdb_regs

A pointer to hold the registers we’ve received from GDB.

regs

A pointer to a struct pt_regs to hold these values in.

Description

Convert the GDB regs in gdb_regs into the pt_regs, and store them in regs.

kgdb_arch_handle_exception

LINUX
Kernel Hackers ManualApril 2009

Name
kgdb_arch_handle_exception — Handle architecture specific GDB packets.
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Chapter 6. KGDB Internals

Synopsis

int kgdb_arch_handle_exception (int vector, int signo, int err_code, char *
remcom_in_buffer, char * remcom_out_buffer, struct pt_regs * regs);

Arguments

vector

The error vector of the exception that happened.

signo

The signal number of the exception that happened.

err_code

The error code of the exception that happened.

remcom_in_buffer

The buffer of the packet we have read.

remcom_out_buffer

The buffer of BUFMAX bytes to write a packet into.

regs

The struct pt_regs of the current process.

Description

This function MUST handle the ’c’ and ’s’ command packets, as well packets to set / remove a hardware
breakpoint, if used. If there are additional packets which the hardware needs to handle, they are handled
here. The code should return -1 if it wants to process more packets, and a 0 or 1 if it wants to exit from
the kgdb callback.

kgdb_roundup_cpus

LINUX
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Chapter 6. KGDB Internals

Kernel Hackers ManualApril 2009

Name
kgdb_roundup_cpus — Get other CPUs into a holding pattern

Synopsis

void kgdb_roundup_cpus (unsigned long flags);

Arguments

flags

Current IRQ state

Description

On SMP systems, we need to get the attention of the other CPUs and get them be in a known state. This
should do what is needed to get the other CPUs to call kgdb_wait. Note that on some arches, the NMI
approach is not used for rounding up all the CPUs. For example, in case of MIPS, smp_call_function
is used to roundup CPUs. In this case, we have to make sure that interrupts are enabled before calling
smp_call_function. The argument to this function is the flags that will be used when restoring the
interrupts. There is local_irq_save call before kgdb_roundup_cpus.

On non-SMP systems, this is not called.

struct kgdb_arch

LINUX
Kernel Hackers ManualApril 2009

Name
struct kgdb_arch — Describe architecture specific values.
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Chapter 6. KGDB Internals

Synopsis
struct kgdb_arch {
unsigned char gdb_bpt_instr[BREAK_INSTR_SIZE];
unsigned long flags;
int (* set_breakpoint) (unsigned long, char *);
int (* remove_breakpoint) (unsigned long, char *);
int (* set_hw_breakpoint) (unsigned long, int, enum kgdb_bptype);
int (* remove_hw_breakpoint) (unsigned long, int, enum kgdb_bptype);
void (* remove_all_hw_break) (void);
void (* correct_hw_break) (void);

};

Members

gdb_bpt_instr[BREAK_INSTR_SIZE]

The instruction to trigger a breakpoint.

flags

Flags for the breakpoint, currently just KGDB_HW_BREAKPOINT.

set_breakpoint

Allow an architecture to specify how to set a software breakpoint.

remove_breakpoint

Allow an architecture to specify how to remove a software breakpoint.

set_hw_breakpoint

Allow an architecture to specify how to set a hardware breakpoint.

remove_hw_breakpoint

Allow an architecture to specify how to remove a hardware breakpoint.

remove_all_hw_break

Allow an architecture to specify how to remove all hardware breakpoints.

correct_hw_break

Allow an architecture to specify how to correct the hardware debug registers.
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Chapter 6. KGDB Internals

struct kgdb_io

LINUX
Kernel Hackers ManualApril 2009

Name
struct kgdb_io — Describe the interface for an I/O driver to talk with KGDB.

Synopsis
struct kgdb_io {
const char * name;
int (* read_char) (void);
void (* write_char) (u8);
void (* flush) (void);
int (* init) (void);
void (* pre_exception) (void);
void (* post_exception) (void);

};

Members

name

Name of the I/O driver.

read_char

Pointer to a function that will return one char.

write_char

Pointer to a function that will write one char.

flush

Pointer to a function that will flush any pending writes.

init

Pointer to a function that will initialize the device.

pre_exception

Pointer to a function that will do any prep work for the I/O driver.
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Chapter 6. KGDB Internals

post_exception

Pointer to a function that will do any cleanup work for the I/O driver.

6.2. kgdboc internals

The kgdboc driver is actually a very thin driver that relies on the underlying low level to the hardware
driver having "polling hooks" which the to which the tty driver is attached. In the initial implementation
of kgdboc it the serial_core was changed to expose a low level uart hook for doing polled mode reading
and writing of a single character while in an atomic context. When kgdb makes an I/O request to the
debugger, kgdboc invokes a call back in the serial core which in turn uses the call back in the uart driver.
It is certainly possible to extend kgdboc to work with non-uart based consoles in the future.

When using kgdboc with a uart, the uart driver must implement two callbacks in the struct
uart_ops. Example from drivers/8250.c:

#ifdef CONFIG_CONSOLE_POLL
.poll_get_char = serial8250_get_poll_char,
.poll_put_char = serial8250_put_poll_char,

#endif

Any implementation specifics around creating a polling driver use the #ifdef
CONFIG_CONSOLE_POLL, as shown above. Keep in mind that polling hooks have to be implemented in
such a way that they can be called from an atomic context and have to restore the state of the uart chip on
return such that the system can return to normal when the debugger detaches. You need to be very careful
with any kind of lock you consider, because failing here is most going to mean pressing the reset button.
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