
Z8530 Programming Guide

Alan Cox
alan@lxorguk.ukuu.org.uk

Z8530 Programming Guide
by Alan Cox

Copyright © 2000 Alan Cox

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Introduction..1
2. Driver Modes..2
3. Using the Z85230 driver ..3
4. Attaching Network Interfaces ..4
5. Configuring And Activating The Port ...5
6. Network Layer Functions ...7
7. Porting The Z8530 Driver...8
8. Known Bugs And Assumptions ..9
9. Public Functions Provided ..10

z8530_interrupt ..10
z8530_sync_open...10
z8530_sync_close ..11
z8530_sync_dma_open..12
z8530_sync_dma_close ...13
z8530_sync_txdma_open...13
z8530_sync_txdma_close ..14
z8530_describe...15
z8530_init...16
z8530_shutdown ..17
z8530_channel_load...18
z8530_null_rx ..18
z8530_queue_xmit ...19

10. Internal Functions ...21
z8530_read_port...21
z8530_write_port ...21
read_zsreg ..22
read_zsdata...23
write_zsreg ...24
write_zsctrl...25
write_zsdata ...25
z8530_flush_fifo...26
z8530_rtsdtr ...27
z8530_rx...28
z8530_tx...29
z8530_status...30
z8530_dma_rx..30
z8530_dma_tx ..31
z8530_dma_status ..32
z8530_rx_clear...33
z8530_tx_clear ...33
z8530_status_clear ...34
z8530_tx_begin ..35
z8530_tx_done ...36
z8530_rx_done...36

iii

spans_boundary..37

iv

Chapter 1. Introduction

The Z85x30 family synchronous/asynchronous controller chips are used on a large number of cheap
network interface cards. The kernel provides a core interface layer that is designed to make it easy to
provide WAN services using this chip.

The current driver only support synchronous operation. Merging the asynchronous driver support into
this code to allow any Z85x30 device to be used as both a tty interface and as a synchronous controller is
a project for Linux post the 2.4 release

1

Chapter 2. Driver Modes

The Z85230 driver layer can drive Z8530, Z85C30 and Z85230 devices in three different modes. Each
mode can be applied to an individual channel on the chip (each chip has two channels).

The PIO synchronous mode supports the most common Z8530 wiring. Here the chip is interface to the
I/O and interrupt facilities of the host machine but not to the DMA subsystem. When running PIO the
Z8530 has extremely tight timing requirements. Doing high speeds, even with a Z85230 will be tricky.
Typically you should expect to achieve at best 9600 baud with a Z8C530 and 64Kbits with a Z85230.

The DMA mode supports the chip when it is configured to use dual DMA channels on an ISA bus. The
better cards tend to support this mode of operation for a single channel. With DMA running the Z85230
tops out when it starts to hit ISA DMA constraints at about 512Kbits. It is worth noting here that many
PC machines hang or crash when the chip is driven fast enough to hold the ISA bus solid.

Transmit DMA mode uses a single DMA channel. The DMA channel is used for transmission as the
transmit FIFO is smaller than the receive FIFO. it gives better performance than pure PIO mode but is
nowhere near as ideal as pure DMA mode.

2

Chapter 3. Using the Z85230 driver

The Z85230 driver provides the back end interface to your board. To configure a Z8530 interface you
need to detect the board and to identify its ports and interrupt resources. It is also your problem to verify
the resources are available.

Having identified the chip you need to fill in a struct z8530_dev, which describes each chip. This object
must exist until you finally shutdown the board. Firstly zero the active field. This ensures nothing goes
off without you intending it. The irq field should be set to the interrupt number of the chip. (Each chip
has a single interrupt source rather than each channel). You are responsible for allocating the interrupt
line. The interrupt handler should be set to z8530_interrupt. The device id should be set to the
z8530_dev structure pointer. Whether the interrupt can be shared or not is board dependent, and up to
you to initialise.

The structure holds two channel structures. Initialise chanA.ctrlio and chanA.dataio with the address of
the control and data ports. You can or this with Z8530_PORT_SLEEP to indicate your interface needs
the 5uS delay for chip settling done in software. The PORT_SLEEP option is architecture specific. Other
flags may become available on future platforms, eg for MMIO. Initialise the chanA.irqs to &z8530_nop
to start the chip up as disabled and discarding interrupt events. This ensures that stray interrupts will be
mopped up and not hang the bus. Set chanA.dev to point to the device structure itself. The private and
name field you may use as you wish. The private field is unused by the Z85230 layer. The name is used
for error reporting and it may thus make sense to make it match the network name.

Repeat the same operation with the B channel if your chip has both channels wired to something useful.
This isn’t always the case. If it is not wired then the I/O values do not matter, but you must initialise
chanB.dev.

If your board has DMA facilities then initialise the txdma and rxdma fields for the relevant channels. You
must also allocate the ISA DMA channels and do any necessary board level initialisation to configure
them. The low level driver will do the Z8530 and DMA controller programming but not board specific
magic.

Having initialised the device you can then call z8530_init. This will probe the chip and reset it into a
known state. An identification sequence is then run to identify the chip type. If the checks fail to pass the
function returns a non zero error code. Typically this indicates that the port given is not valid. After this
call the type field of the z8530_dev structure is initialised to either Z8530, Z85C30 or Z85230 according
to the chip found.

Once you have called z8530_init you can also make use of the utility function z8530_describe. This
provides a consistent reporting format for the Z8530 devices, and allows all the drivers to provide
consistent reporting.

3

Chapter 4. Attaching Network Interfaces

If you wish to use the network interface facilities of the driver, then you need to attach a network device
to each channel that is present and in use. In addition to use the generic HDLC you need to follow some
additional plumbing rules. They may seem complex but a look at the example hostess_sv11 driver should
reassure you.

The network device used for each channel should be pointed to by the netdevice field of each channel.
The hdlc-> priv field of the network device points to your private data - you will need to be able to find
your private data from this.

The way most drivers approach this particular problem is to create a structure holding the Z8530 device
definition and put that into the private field of the network device. The network device fields of the
channels then point back to the network devices.

If you wish to use the generic HDLC then you need to register the HDLC device.

Before you register your network device you will also need to provide suitable handlers for most of the
network device callbacks. See the network device documentation for more details on this.

4

Chapter 5. Configuring And Activating The Port

The Z85230 driver provides helper functions and tables to load the port registers on the Z8530 chips.
When programming the register settings for a channel be aware that the documentation recommends
initialisation orders. Strange things happen when these are not followed.

z8530_channel_load takes an array of pairs of initialisation values in an array of u8 type. The first
value is the Z8530 register number. Add 16 to indicate the alternate register bank on the later chips. The
array is terminated by a 255.

The driver provides a pair of public tables. The z8530_hdlc_kilostream table is for the UK ’Kilostream’
service and also happens to cover most other end host configurations. The
z8530_hdlc_kilostream_85230 table is the same configuration using the enhancements of the 85230
chip. The configuration loaded is standard NRZ encoded synchronous data with HDLC bitstuffing. All of
the timing is taken from the other end of the link.

When writing your own tables be aware that the driver internally tracks register values. It may need to
reload values. You should therefore be sure to set registers 1-7, 9-11, 14 and 15 in all configurations.
Where the register settings depend on DMA selection the driver will update the bits itself when you open
or close. Loading a new table with the interface open is not recommended.

There are three standard configurations supported by the core code. In PIO mode the interface is
programmed up to use interrupt driven PIO. This places high demands on the host processor to avoid
latency. The driver is written to take account of latency issues but it cannot avoid latencies caused by
other drivers, notably IDE in PIO mode. Because the drivers allocate buffers you must also prevent MTU
changes while the port is open.

Once the port is open it will call the rx_function of each channel whenever a completed packet arrived.
This is invoked from interrupt context and passes you the channel and a network buffer (struct sk_buff)
holding the data. The data includes the CRC bytes so most users will want to trim the last two bytes
before processing the data. This function is very timing critical. When you wish to simply discard data
the support code provides the function z8530_null_rx to discard the data.

To active PIO mode sending and receiving the z8530_sync_open is called. This expects to be passed
the network device and the channel. Typically this is called from your network device open callback. On
a failure a non zero error status is returned. The z8530_sync_close function shuts down a PIO
channel. This must be done before the channel is opened again and before the driver shuts down and
unloads.

The ideal mode of operation is dual channel DMA mode. Here the kernel driver will configure the board
for DMA in both directions. The driver also handles ISA DMA issues such as controller programming
and the memory range limit for you. This mode is activated by calling the z8530_sync_dma_open
function. On failure a non zero error value is returned. Once this mode is activated it can be shut down by

5

Chapter 5. Configuring And Activating The Port

calling the z8530_sync_dma_close. You must call the close function matching the open mode you
used.

The final supported mode uses a single DMA channel to drive the transmit side. As the Z85C30 has a
larger FIFO on the receive channel this tends to increase the maximum speed a little. This is activated by
calling the z8530_sync_txdma_open . This returns a non zero error code on failure. The
z8530_sync_txdma_close function closes down the Z8530 interface from this mode.

6

Chapter 6. Network Layer Functions

The Z8530 layer provides functions to queue packets for transmission. The driver internally buffers the
frame currently being transmitted and one further frame (in order to keep back to back transmission
running). Any further buffering is up to the caller.

The function z8530_queue_xmit takes a network buffer in sk_buff format and queues it for
transmission. The caller must provide the entire packet with the exception of the bitstuffing and CRC.
This is normally done by the caller via the generic HDLC interface layer. It returns 0 if the buffer has
been queued and non zero values for queue full. If the function accepts the buffer it becomes property of
the Z8530 layer and the caller should not free it.

The function z8530_get_stats returns a pointer to an internally maintained per interface statistics
block. This provides most of the interface code needed to implement the network layer get_stats callback.

7

Chapter 7. Porting The Z8530 Driver

The Z8530 driver is written to be portable. In DMA mode it makes assumptions about the use of ISA
DMA. These are probably warranted in most cases as the Z85230 in particular was designed to glue to
PC type machines. The PIO mode makes no real assumptions.

Should you need to retarget the Z8530 driver to another architecture the only code that should need
changing are the port I/O functions. At the moment these assume PC I/O port accesses. This may not be
appropriate for all platforms. Replacing z8530_read_port and z8530_write_port is intended to
be all that is required to port this driver layer.

8

Chapter 8. Known Bugs And Assumptions

Interrupt Locking

The locking in the driver is done via the global cli/sti lock. This makes for relatively poor SMP
performance. Switching this to use a per device spin lock would probably materially improve
performance.

Occasional Failures

We have reports of occasional failures when run for very long periods of time and the driver starts to
receive junk frames. At the moment the cause of this is not clear.

9

Chapter 9. Public Functions Provided

z8530_interrupt

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_interrupt — Handle an interrupt from a Z8530

Synopsis

irqreturn_t z8530_interrupt (int irq, void * dev_id);

Arguments

irq

Interrupt number

dev_id

The Z8530 device that is interrupting.

Description

A Z85[2]30 device has stuck its hand in the air for attention. We scan both the channels on the chip for
events and then call the channel specific call backs for each channel that has events. We have to use
callback functions because the two channels can be in different modes.

Locking is done for the handlers. Note that locking is done at the chip level (the 5uS delay issue is per
chip not per channel). c->lock for both channels points to dev->lock

10

Chapter 9. Public Functions Provided

z8530_sync_open

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_sync_open — Open a Z8530 channel for PIO

Synopsis

int z8530_sync_open (struct net_device * dev, struct z8530_channel * c);

Arguments

dev

The network interface we are using

c

The Z8530 channel to open in synchronous PIO mode

Description

Switch a Z8530 into synchronous mode without DMA assist. We raise the RTS/DTR and commence
network operation.

z8530_sync_close

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_sync_close — Close a PIO Z8530 channel

11

Chapter 9. Public Functions Provided

Synopsis

int z8530_sync_close (struct net_device * dev, struct z8530_channel * c);

Arguments

dev

Network device to close

c

Z8530 channel to disassociate and move to idle

Description

Close down a Z8530 interface and switch its interrupt handlers to discard future events.

z8530_sync_dma_open

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_sync_dma_open — Open a Z8530 for DMA I/O

Synopsis

int z8530_sync_dma_open (struct net_device * dev, struct z8530_channel * c);

Arguments

dev

The network device to attach

12

Chapter 9. Public Functions Provided

c

The Z8530 channel to configure in sync DMA mode.

Description

Set up a Z85x30 device for synchronous DMA in both directions. Two ISA DMA channels must be
available for this to work. We assume ISA DMA driven I/O and PC limits on access.

z8530_sync_dma_close

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_sync_dma_close — Close down DMA I/O

Synopsis

int z8530_sync_dma_close (struct net_device * dev, struct z8530_channel * c);

Arguments

dev

Network device to detach

c

Z8530 channel to move into discard mode

Description

Shut down a DMA mode synchronous interface. Halt the DMA, and free the buffers.

13

Chapter 9. Public Functions Provided

z8530_sync_txdma_open

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_sync_txdma_open — Open a Z8530 for TX driven DMA

Synopsis

int z8530_sync_txdma_open (struct net_device * dev, struct z8530_channel *
c);

Arguments

dev

The network device to attach

c

The Z8530 channel to configure in sync DMA mode.

Description

Set up a Z85x30 device for synchronous DMA tranmission. One ISA DMA channel must be available
for this to work. The receive side is run in PIO mode, but then it has the bigger FIFO.

z8530_sync_txdma_close

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_sync_txdma_close — Close down a TX driven DMA channel

14

Chapter 9. Public Functions Provided

Synopsis

int z8530_sync_txdma_close (struct net_device * dev, struct z8530_channel *
c);

Arguments

dev

Network device to detach

c

Z8530 channel to move into discard mode

Description

Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, and free the buffers.

z8530_describe

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_describe — Uniformly describe a Z8530 port

Synopsis

void z8530_describe (struct z8530_dev * dev, char * mapping, unsigned long
io);

15

Chapter 9. Public Functions Provided

Arguments

dev

Z8530 device to describe

mapping

string holding mapping type (eg “I/O” or “Mem”)

io

the port value in question

Description

Describe a Z8530 in a standard format. We must pass the I/O as the port offset isnt predictable. The main
reason for this function is to try and get a common format of report.

z8530_init

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_init — Initialise a Z8530 device

Synopsis

int z8530_init (struct z8530_dev * dev);

Arguments

dev

Z8530 device to initialise.

16

Chapter 9. Public Functions Provided

Description

Configure up a Z8530/Z85C30 or Z85230 chip. We check the device is present, identify the type and
then program it to hopefully keep quite and behave. This matters a lot, a Z8530 in the wrong state will
sometimes get into stupid modes generating 10Khz interrupt streams and the like.

We set the interrupt handler up to discard any events, in case we get them during reset or setp.

Return 0 for success, or a negative value indicating the problem in errno form.

z8530_shutdown

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_shutdown — Shutdown a Z8530 device

Synopsis

int z8530_shutdown (struct z8530_dev * dev);

Arguments

dev

The Z8530 chip to shutdown

Description

We set the interrupt handlers to silence any interrupts. We then reset the chip and wait 100uS to be sure
the reset completed. Just in case the caller then tries to do stuff.

This is called without the lock held

17

Chapter 9. Public Functions Provided

z8530_channel_load

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_channel_load — Load channel data

Synopsis

int z8530_channel_load (struct z8530_channel * c, u8 * rtable);

Arguments

c

Z8530 channel to configure

rtable

table of register, value pairs

FIXME

ioctl to allow user uploaded tables

Load a Z8530 channel up from the system data. We use +16 to indicate the “prime” registers. The value
255 terminates the table.

z8530_null_rx

LINUX

18

Chapter 9. Public Functions Provided

Kernel Hackers ManualApril 2009

Name
z8530_null_rx — Discard a packet

Synopsis

void z8530_null_rx (struct z8530_channel * c, struct sk_buff * skb);

Arguments

c

The channel the packet arrived on

skb

The buffer

Description

We point the receive handler at this function when idle. Instead of processing the frames we get to throw
them away.

z8530_queue_xmit

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_queue_xmit — Queue a packet

Synopsis

int z8530_queue_xmit (struct z8530_channel * c, struct sk_buff * skb);

19

Chapter 9. Public Functions Provided

Arguments

c

The channel to use

skb

The packet to kick down the channel

Description

Queue a packet for transmission. Because we have rather hard to hit interrupt latencies for the Z85230
per packet even in DMA mode we do the flip to DMA buffer if needed here not in the IRQ.

Called from the network code. The lock is not held at this point.

20

Chapter 10. Internal Functions

z8530_read_port

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_read_port — Architecture specific interface function

Synopsis

int z8530_read_port (unsigned long p);

Arguments

p

port to read

Description

Provided port access methods. The Comtrol SV11 requires no delays between accesses and uses PC I/O.
Some drivers may need a 5uS delay

In the longer term this should become an architecture specific section so that this can become a generic
driver interface for all platforms. For now we only handle PC I/O ports with or without the dread 5uS
sanity delay.

The caller must hold sufficient locks to avoid violating the horrible 5uS delay rule.

z8530_write_port

LINUX

21

Chapter 10. Internal Functions

Kernel Hackers ManualApril 2009

Name
z8530_write_port — Architecture specific interface function

Synopsis

void z8530_write_port (unsigned long p, u8 d);

Arguments

p

port to write

d

value to write

Description

Write a value to a port with delays if need be. Note that the caller must hold locks to avoid read/writes
from other contexts violating the 5uS rule

In the longer term this should become an architecture specific section so that this can become a generic
driver interface for all platforms. For now we only handle PC I/O ports with or without the dread 5uS
sanity delay.

read_zsreg

LINUX
Kernel Hackers ManualApril 2009

Name
read_zsreg — Read a register from a Z85230

22

Chapter 10. Internal Functions

Synopsis

u8 read_zsreg (struct z8530_channel * c, u8 reg);

Arguments

c

Z8530 channel to read from (2 per chip)

reg

Register to read

FIXME

Use a spinlock.

Most of the Z8530 registers are indexed off the control registers. A read is done by writing to the control
register and reading the register back. The caller must hold the lock

read_zsdata

LINUX
Kernel Hackers ManualApril 2009

Name
read_zsdata — Read the data port of a Z8530 channel

Synopsis

u8 read_zsdata (struct z8530_channel * c);

23

Chapter 10. Internal Functions

Arguments

c

The Z8530 channel to read the data port from

Description

The data port provides fast access to some things. We still have all the 5uS delays to worry about.

write_zsreg

LINUX
Kernel Hackers ManualApril 2009

Name
write_zsreg — Write to a Z8530 channel register

Synopsis

void write_zsreg (struct z8530_channel * c, u8 reg, u8 val);

Arguments

c

The Z8530 channel

reg

Register number

val

Value to write

24

Chapter 10. Internal Functions

Description

Write a value to an indexed register. The caller must hold the lock to honour the irritating delay rules. We
know about register 0 being fast to access.

Assumes c->lock is held.

write_zsctrl

LINUX
Kernel Hackers ManualApril 2009

Name
write_zsctrl — Write to a Z8530 control register

Synopsis

void write_zsctrl (struct z8530_channel * c, u8 val);

Arguments

c

The Z8530 channel

val

Value to write

Description

Write directly to the control register on the Z8530

25

Chapter 10. Internal Functions

write_zsdata

LINUX
Kernel Hackers ManualApril 2009

Name
write_zsdata — Write to a Z8530 control register

Synopsis

void write_zsdata (struct z8530_channel * c, u8 val);

Arguments

c

The Z8530 channel

val

Value to write

Description

Write directly to the data register on the Z8530

z8530_flush_fifo

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_flush_fifo — Flush on chip RX FIFO

26

Chapter 10. Internal Functions

Synopsis

void z8530_flush_fifo (struct z8530_channel * c);

Arguments

c

Channel to flush

Description

Flush the receive FIFO. There is no specific option for this, we blindly read bytes and discard them.
Reading when there is no data is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.

All locking is handled for the caller. On return data may still be present if it arrived during the flush.

z8530_rtsdtr

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_rtsdtr — Control the outgoing DTS/RTS line

Synopsis

void z8530_rtsdtr (struct z8530_channel * c, int set);

Arguments

c

The Z8530 channel to control;

27

Chapter 10. Internal Functions

set

1 to set, 0 to clear

Description

Sets or clears DTR/RTS on the requested line. All locking is handled by the caller. For now we assume all
boards use the actual RTS/DTR on the chip. Apparently one or two don’t. We’ll scream about them later.

z8530_rx

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_rx — Handle a PIO receive event

Synopsis

void z8530_rx (struct z8530_channel * c);

Arguments

c

Z8530 channel to process

Description

Receive handler for receiving in PIO mode. This is much like the async one but not quite the same or as
complex

28

Chapter 10. Internal Functions

Note

Its intended that this handler can easily be separated from the main code to run realtime. That’ll be
needed for some machines (eg to ever clock 64kbits on a sparc ;)).

The RT_LOCK macros don’t do anything now. Keep the code covered by them as short as possible in all
circumstances - clocks cost baud. The interrupt handler is assumed to be atomic w.r.t. to other code - this
is true in the RT case too.

We only cover the sync cases for this. If you want 2Mbit async do it yourself but consider medical
assistance first. This non DMA synchronous mode is portable code. The DMA mode assumes PCI like
ISA DMA

Called with the device lock held

z8530_tx

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_tx — Handle a PIO transmit event

Synopsis

void z8530_tx (struct z8530_channel * c);

Arguments

c

Z8530 channel to process

29

Chapter 10. Internal Functions

Description

Z8530 transmit interrupt handler for the PIO mode. The basic idea is to attempt to keep the FIFO fed. We
fill as many bytes in as possible, its quite possible that we won’t keep up with the data rate otherwise.

z8530_status

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_status — Handle a PIO status exception

Synopsis

void z8530_status (struct z8530_channel * chan);

Arguments

chan

Z8530 channel to process

Description

A status event occurred in PIO synchronous mode. There are several reasons the chip will bother us here.
A transmit underrun means we failed to feed the chip fast enough and just broke a packet. A DCD
change is a line up or down.

z8530_dma_rx

LINUX

30

Chapter 10. Internal Functions

Kernel Hackers ManualApril 2009

Name
z8530_dma_rx — Handle a DMA RX event

Synopsis

void z8530_dma_rx (struct z8530_channel * chan);

Arguments

chan

Channel to handle

Description

Non bus mastering DMA interfaces for the Z8x30 devices. This is really pretty PC specific. The DMA
mode means that most receive events are handled by the DMA hardware. We get a kick here only if a
frame ended.

z8530_dma_tx

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_dma_tx — Handle a DMA TX event

Synopsis

void z8530_dma_tx (struct z8530_channel * chan);

31

Chapter 10. Internal Functions

Arguments

chan

The Z8530 channel to handle

Description

We have received an interrupt while doing DMA transmissions. It shouldn’t happen. Scream loudly if it
does.

z8530_dma_status

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_dma_status — Handle a DMA status exception

Synopsis

void z8530_dma_status (struct z8530_channel * chan);

Arguments

chan

Z8530 channel to process

Description

A status event occurred on the Z8530. We receive these for two reasons when in DMA mode. Firstly if
we finished a packet transfer we get one and kick the next packet out. Secondly we may see a DCD
change.

32

Chapter 10. Internal Functions

z8530_rx_clear

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_rx_clear — Handle RX events from a stopped chip

Synopsis

void z8530_rx_clear (struct z8530_channel * c);

Arguments

c

Z8530 channel to shut up

Description

Receive interrupt vectors for a Z8530 that is in ’parked’ mode. For machines with PCI Z85x30 cards, or
level triggered interrupts (eg the MacII) we must clear the interrupt cause or die.

z8530_tx_clear

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_tx_clear — Handle TX events from a stopped chip

33

Chapter 10. Internal Functions

Synopsis

void z8530_tx_clear (struct z8530_channel * c);

Arguments

c

Z8530 channel to shut up

Description

Transmit interrupt vectors for a Z8530 that is in ’parked’ mode. For machines with PCI Z85x30 cards, or
level triggered interrupts (eg the MacII) we must clear the interrupt cause or die.

z8530_status_clear

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_status_clear — Handle status events from a stopped chip

Synopsis

void z8530_status_clear (struct z8530_channel * chan);

Arguments

chan

Z8530 channel to shut up

34

Chapter 10. Internal Functions

Description

Status interrupt vectors for a Z8530 that is in ’parked’ mode. For machines with PCI Z85x30 cards, or
level triggered interrupts (eg the MacII) we must clear the interrupt cause or die.

z8530_tx_begin

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_tx_begin — Begin packet transmission

Synopsis

void z8530_tx_begin (struct z8530_channel * c);

Arguments

c

The Z8530 channel to kick

Description

This is the speed sensitive side of transmission. If we are called and no buffer is being transmitted we
commence the next buffer. If nothing is queued we idle the sync.

Note

We are handling this code path in the interrupt path, keep it fast or bad things will happen.

Called with the lock held.

35

Chapter 10. Internal Functions

z8530_tx_done

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_tx_done — TX complete callback

Synopsis

void z8530_tx_done (struct z8530_channel * c);

Arguments

c

The channel that completed a transmit.

Description

This is called when we complete a packet send. We wake the queue, start the next packet going and then
free the buffer of the existing packet. This code is fairly timing sensitive.

Called with the register lock held.

z8530_rx_done

LINUX
Kernel Hackers ManualApril 2009

Name
z8530_rx_done — Receive completion callback

36

Chapter 10. Internal Functions

Synopsis

void z8530_rx_done (struct z8530_channel * c);

Arguments

c

The channel that completed a receive

Description

A new packet is complete. Our goal here is to get back into receive mode as fast as possible. On the
Z85230 we could change to using ESCC mode, but on the older chips we have no choice. We flip to the
new buffer immediately in DMA mode so that the DMA of the next frame can occur while we are
copying the previous buffer to an sk_buff

Called with the lock held

spans_boundary

LINUX
Kernel Hackers ManualApril 2009

Name
spans_boundary — Check a packet can be ISA DMA’d

Synopsis

int spans_boundary (struct sk_buff * skb);

37

Chapter 10. Internal Functions

Arguments

skb

The buffer to check

Description

Returns true if the buffer cross a DMA boundary on a PC. The poor thing can only DMA within a 64K
block not across the edges of it.

38

	Z8530 Programming Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Driver Modes
	Chapter 3. Using the Z85230 driver
	Chapter 4. Attaching Network Interfaces
	Chapter 5. Configuring And Activating The Port
	Chapter 6. Network Layer Functions
	Chapter 7. Porting The Z8530 Driver
	Chapter 8. Known Bugs And Assumptions
	Chapter 9. Public Functions Provided
	z8530interrupt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530syncopen
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530syncclose
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530syncdmaopen
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530syncdmaclose
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530synctxdmaopen
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530synctxdmaclose
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530describe
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530init
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530shutdown
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530channelload
	LINUX
	Name
	Synopsis
	Arguments
	FIXME

	z8530nullrx
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530queuexmit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 10. Internal Functions
	z8530readport
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530writeport
	LINUX
	Name
	Synopsis
	Arguments
	Description

	readzsreg
	LINUX
	Name
	Synopsis
	Arguments
	FIXME

	readzsdata
	LINUX
	Name
	Synopsis
	Arguments
	Description

	writezsreg
	LINUX
	Name
	Synopsis
	Arguments
	Description

	writezsctrl
	LINUX
	Name
	Synopsis
	Arguments
	Description

	writezsdata
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530flushfifo
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530rtsdtr
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530rx
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Note

	z8530tx
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530status
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530dmarx
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530dmatx
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530dmastatus
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530rxclear
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530txclear
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530statusclear
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530txbegin
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Note

	z8530txdone
	LINUX
	Name
	Synopsis
	Arguments
	Description

	z8530rxdone
	LINUX
	Name
	Synopsis
	Arguments
	Description

	spansboundary
	LINUX
	Name
	Synopsis
	Arguments
	Description

