6917
Comment:
|
8929
radix tree __alloc_fd
|
Deletions are marked like this. | Additions are marked like this. |
Line 5: | Line 5: |
'''Round 12''' is coming up soon. It's too early to send patches to the outreachy kernel mailing list, but please consider working through the other parts of the tutorial if you are intersted in applying. | The application period for '''Round 13''' will start on September 12, 2016. It's too early to send patches to the outreachy kernel mailing list, but please consider working through the other parts of the tutorial if you are interested in applying. |
Line 7: | Line 7: |
We are looking for round 12 [:OutreachySponsor:funding sponsors] and Linux kernel [:OutreachyMentor:mentors]. Please see the linked FAQ pages if you want to help out. | We are looking for round 13 [:OutreachySponsor:funding sponsors] and Linux kernel [:OutreachyMentor:mentors]. Please see the linked FAQ pages if you want to help out. |
Line 9: | Line 9: |
Welcome Outreachy applicants! Our [:OutreachySponsor:round 11 sponsors] have generiously donated funds for internships for women, genderqueer, genderfluid, or genderfree people, and residents and nationals of the United States of any gender who are Black/African American, Hispanic/Latino, American Indian, Alaska Native, Native Hawaiian, or Pacific Islander to work on the Linux kernel. The kernel is the most basic layer of the Linux operating system. It encompasses many things: hardware drivers, filesystems, security, task scheduling, and much more. | Welcome Outreachy applicants! Our [:OutreachySponsor:round 13 sponsors] have generiously donated funds for internships for women, genderqueer, genderfluid, or genderfree people, and residents and nationals of the United States of any gender who are Black/African American, Hispanic/Latino, American Indian, Alaska Native, Native Hawaiian, or Pacific Islander to work on the Linux kernel. The kernel is the most basic layer of the Linux operating system. It encompasses many things: hardware drivers, filesystems, security, task scheduling, and much more. '''News''' This year, we ask that you send all patches to the appropriate staging driver maintainers, as well as to the outreachy mailing list. See [:FirstKernelPatch#submit_a_patch:Submit a patch] for more information. |
Line 12: | Line 14: |
The application period for Outreachy Round 12 is February 9 to March 22. Please fill your [https://live.gnome.org/OutreachProgramForWomen#Application_Process application] by '''March 22''', and complete your kernel patch by '''March 22''' also (7pm UTC in both cases). Applicants that do not complete the first patch will not be considered for an internship. Please take a look at our [:OutreachyApply:application FAQ] for more info on how to fill out your application. | The application period for Outreachy Round 13 is September 12 to October 17. Please fill your [https://live.gnome.org/OutreachProgramForWomen#Application_Process application] by '''October 17''', and complete your kernel patch by '''October 17''' also (7pm UTC in both cases). Applicants that do not complete the first patch will not be considered for an internship. Please take a look at our [:OutreachyApply:application FAQ] for more info on how to fill out your application. |
Line 17: | Line 19: |
* Join the #opw IRC channel on irc.gnome.org | * Join the #outreachy IRC channel on irc.gnome.org |
Line 19: | Line 21: |
* Read our [:OutreachyApply:instructions for applying], and apply by March 22. * Use our [:Outreachyfirstpatch:tutorial] to send in your first kernel patch by March 22. |
* Read our [:OutreachyApply:instructions for applying], and apply by October 17. * Use our [:Outreachyfirstpatch:tutorial] to send in your first kernel patch by October 17. |
Line 27: | Line 29: |
= Round 12 projects = Round 11 projects are available [:OutreachyRound11:here]. For each project, if you click on the proposer's name, you may find more information. The following is a partial list of projects. More will come soon. == Update legacy workqueue creation interface users == ''Mentor:'': [:Tejun Heo:Tejun Heo] Workqueue is an asynchronous execution mechanism which is widely used across the kernel. A work item queued on a workqueue is asynchronously executed by a worker task (kworker/* in ps output). It's used for various purposes from simple context bouncing to hosting a persistent in-kernel service thread. Due to its development history, there currently are two sets of interfaces to create workqueues. * create[_singlethread|_freezable]_workqueue() * alloc[_ordered]_workqueue() The latter is the new interface which is superset of the former. While each create*_workqueue() can be directly mapped to an alloc*_workqueue() invocation, create*_workqueue() encodes much less information than alloc*_workqueue() making determining which exact flavor and attributes to use non-trivial. Each case should be examined to find out why a specific kind is used and then converted to an alloc*_workqueue() invocation which matches the requirements. There currently are around 280 users of the legacy interface. While the number seems daunting, there are common patterns that many of them follow. This project would involve understanding workqueue's various users to certain degree in addition to workqueue itself and can be a good opportunity to roam through and learn various parts of the kernel. |
= Round 13 projects = Previous projects, from round 12 projects are available [:OutreachyRound12:here]. For each project, if you click on the proposer's name, you may find more information. |
Line 49: | Line 35: |
Coccinelle is a program matching and transformation tool that has been extensively used for finding bugs in the Linux kernel. Around 50 Coccinelle rules are currently part of the kernel source code, and are regularly run on all kernel code changes via the 0-day build testing service. Still, there is the potential for many more such rules. The goal of this project is to prepare existing semantic patches, such as those found at [https://github.com/coccinelle/coccinellery coccinellery] for inclusion in the kernel and to write some new ones. More information about Coccinelle is available [http://coccinelle.lip6.fr/ here], including a [http://coccinelle.lip6.fr/papers/tutorial.pdf tutorial]. For some Coccinelle small tasks, click on the mentor name. | Coccinelle is a program matching and transformation tool that has been extensively used for improving Linux kernel code. This project will involve using Coccinelle to address a security issue in the Linux kernel. The Linux kernel contains many data structures whose contents never change once they are initialized, many of which contain function pointers. Such structures that are modifiable at run time constitute a security risk, because an attacker may be able to overwrite the field value with a pointer to malicious code, that will then be executed with full kernel privileges. The first goal of this project is to use Coccinelle to insert const annotations on such structures to prevent runtime modfications. Some structures, however, cannot be made const, because they are initialized in several steps. In these cases, it may be possible to annotate the structure as {{{__ro_after_init}}}, if all of the initializations can take place during the init phase. The second goal is to add {{{__ro_after_init}}} where they are needed. This may requiring adding {{{__init}}} annotations on some code that is actually only needed during the init phase.line bash script. Please indicate in your application whether you are interested in this part of the project, however, interest in this part of the project is not a prerequisite for being selected as an intern. More information about Coccinelle is available [http://coccinelle.lip6.fr/ here], including a [http://coccinelle.lip6.fr/papers/tutorial.pdf tutorial]. For some Coccinelle small tasks, click on the mentor name. |
Line 52: | Line 42: |
''Mentor:'': [:DanielBaluta:Daniel Baluta] | ''Mentor:'': [:AlisonSchofield:Alison Schofield] and [:DanielBaluta:Daniel Baluta] |
Line 56: | Line 46: |
The goal of this project is to write a driver for a sensor using the Industrial I/O interface. In the first part of the project you will get familiar with the hardware and the IIO subsystem then implement raw readings from the device. After upstreaming the code we will enhance the driver with support for buffered readings, power management and interrupts. The exact device will be decided when the internship starts. | The goal of this project is to write a driver for a sensor using the Industrial I/O interface. In the first part of the project you will get familiar with the hardware and the IIO subsystem then implement raw readings from the device. After upstreaming the code you will enhance the driver with advanced features such as support for buffered readings, power management and interrupts. The exact device will be decided when the internship starts. |
Line 58: | Line 48: |
We will provide you the hardware setup necessary to test the driver. | We will provide you the hardware setup necessary to test the driver. If you are interested in this project please consider solving the [:IIO_tasks:IIO tasks]. == nftables == ''Mentor:'': [:pablo:Pablo Neira Ayuso] nftables provides a replacement for the very popular {ip,ip6,arp,eb}tables tools. nftables reuses most of the Netfilter components such as the existing hooks, connection tracking system, NAT, userspace queueing, logging among many other features. So we have only replaced the packet classification framework. nftables comes with a new userspace utility ''nft'' and the low-level userspace library ''libnftnl''. The goal will be to help finish the translation layer software that converts from the iptables syntax to nftables, complete some simple missing features and fixing bugs whenever possible. If you are interested in this project please consider solving any of the following tasks: * Request an account for the wiki.nftables.org page and help us improve the content. * Provide an iptables to nft translation via the iptables-translate utility. You can give a try to the following extensions: icmp, icmp6, rt. * Try to fix any of the existing nft bugs in bugzilla.netfilter.org. For more information on nftables, please check: http://wiki.nftables.org == radix tree __alloc_fd == ''Mentors:'': [:RikvanRiel:Rik van Riel] [:MatthewWilcox:Matthew Wilcox] Currently sys_open() uses a linear search through a bitmap to find the first free file descriptor. This custom code could be replaced with the generic radix tree code, using a radix tree tag to keep track of where in the tree free file descriptor entries are. This replaces some custom code in the kernel with generic code (hopefully shrinking the size of the kernel), could result in some memory savings for processes with relatively few open files, and hopefully improve performance of workloads with very large numbers of open files. If you think you may be interested in this project, here are some small tasks to start with: * read how sys_open() currently finds the first open file descriptor, and allocates/resizes the file descriptor table * read how the radix tree code works * email Matthew and Rik a description of your findings, and a proposed project time line If you have any questions, please email Matthew and Rik. |
Line 69: | Line 84: |
* Join the #opw IRC channel on irc.gnome.org | * Join the #outreachy IRC channel on irc.gnome.org |
Line 71: | Line 86: |
* Read our [:OutreachyApply:instructions for applying], and apply by March 22. * Use our [:Outreachyfirstpatch:tutorial] to send in your first kernel patch by March 22. * After you have sent several cleanup patches and at least one patchset, choose a [:OutreachyTasks:small task] to complete. |
* Read our [:OutreachyApply:instructions for applying], and apply by October 17. * Use our [:Outreachyfirstpatch:tutorial] to send in your first kernel patch by October 17. * After you have 10 cleanup patches and at least two patchsets, choose some [:OutreachyTasks:small tasks] to complete. |
Outreachy (formerly FOSS Outreach Program for Women (OPW) and Project Ascend Alumni)
Please see the [https://www.gnome.org/outreachy/ Outreachy homepage] for an introduction to the program.
The application period for Round 13 will start on September 12, 2016. It's too early to send patches to the outreachy kernel mailing list, but please consider working through the other parts of the tutorial if you are interested in applying.
We are looking for round 13 [:OutreachySponsor:funding sponsors] and Linux kernel [:OutreachyMentor:mentors]. Please see the linked FAQ pages if you want to help out.
Welcome Outreachy applicants! Our [:OutreachySponsor:round 13 sponsors] have generiously donated funds for internships for women, genderqueer, genderfluid, or genderfree people, and residents and nationals of the United States of any gender who are Black/African American, Hispanic/Latino, American Indian, Alaska Native, Native Hawaiian, or Pacific Islander to work on the Linux kernel. The kernel is the most basic layer of the Linux operating system. It encompasses many things: hardware drivers, filesystems, security, task scheduling, and much more.
News This year, we ask that you send all patches to the appropriate staging driver maintainers, as well as to the outreachy mailing list. See [:FirstKernelPatch#submit_a_patch:Submit a patch] for more information.
How to apply
The application period for Outreachy Round 13 is September 12 to October 17. Please fill your [https://live.gnome.org/OutreachProgramForWomen#Application_Process application] by October 17, and complete your kernel patch by October 17 also (7pm UTC in both cases). Applicants that do not complete the first patch will not be considered for an internship. Please take a look at our [:OutreachyApply:application FAQ] for more info on how to fill out your application.
If you are interested in being a Linux kernel intern, please:
Join the [https://groups.google.com/forum/#!forum/outreachy-kernel outreachy-kernel mailing list]
- Join the #outreachy IRC channel on irc.gnome.org
- Join the #kernel-outreachy IRC channel on irc.oftc.net
Read our [:OutreachyApply:instructions for applying], and apply by October 17.
Use our [:Outreachyfirstpatch:tutorial] to send in your first kernel patch by October 17.
Participating Linux kernel projects
Applicants for all projects should have basic experience with C or C++ and boolean algebra. Optionally, we would love it if you have basic operating system knowledge, know your way around a Linux/UNIX command line, and/or know the revision system called git. Please note that these three skills can be learned during the internship.
Some projects may have small tasks you can complete as part of the application process. Do not start on these tasks until after you complete the [:Outreachyfirstpatch:first patch tutorial] and Greg Kroah-Hartman has accepted at least ten of your cleanup patches and two of your patchsets. In order to ensure applicants aren't working on the same task, we need your help in coordinating who is working on what task. Please see the [:OutreachyTasks:Outreachy tasks page] for details before starting on a task!
Round 13 projects
Previous projects, from round 12 projects are available [:OutreachyRound12:here]. For each project, if you click on the proposer's name, you may find more information.
Coccinelle
Mentor:: [:JuliaLawall:Julia Lawall]
Coccinelle is a program matching and transformation tool that has been extensively used for improving Linux kernel code. This project will involve using Coccinelle to address a security issue in the Linux kernel.
The Linux kernel contains many data structures whose contents never change once they are initialized, many of which contain function pointers. Such structures that are modifiable at run time constitute a security risk, because an attacker may be able to overwrite the field value with a pointer to malicious code, that will then be executed with full kernel privileges. The first goal of this project is to use Coccinelle to insert const annotations on such structures to prevent runtime modfications. Some structures, however, cannot be made const, because they are initialized in several steps. In these cases, it may be possible to annotate the structure as __ro_after_init, if all of the initializations can take place during the init phase. The second goal is to add __ro_after_init where they are needed. This may requiring adding __init annotations on some code that is actually only needed during the init phase.line bash script. Please indicate in your application whether you are interested in this part of the project, however, interest in this part of the project is not a prerequisite for being selected as an intern.
More information about Coccinelle is available [http://coccinelle.lip6.fr/ here], including a [http://coccinelle.lip6.fr/papers/tutorial.pdf tutorial]. For some Coccinelle small tasks, click on the mentor name.
IIO driver
Mentor:: [:AlisonSchofield:Alison Schofield] and [:DanielBaluta:Daniel Baluta]
A driver allows applications to communicate and control hardware devices. Each development cycle, driver changes account for more than a half of the total Linux kernel code changes.
The goal of this project is to write a driver for a sensor using the Industrial I/O interface. In the first part of the project you will get familiar with the hardware and the IIO subsystem then implement raw readings from the device. After upstreaming the code you will enhance the driver with advanced features such as support for buffered readings, power management and interrupts. The exact device will be decided when the internship starts.
We will provide you the hardware setup necessary to test the driver. If you are interested in this project please consider solving the [:IIO_tasks:IIO tasks].
nftables
Mentor:: [:pablo:Pablo Neira Ayuso]
nftables provides a replacement for the very popular {ip,ip6,arp,eb}tables tools. nftables reuses most of the Netfilter components such as the existing hooks, connection tracking system, NAT, userspace queueing, logging among many other features. So we have only replaced the packet classification framework. nftables comes with a new userspace utility nft and the low-level userspace library libnftnl. The goal will be to help finish the translation layer software that converts from the iptables syntax to nftables, complete some simple missing features and fixing bugs whenever possible.
If you are interested in this project please consider solving any of the following tasks:
- Request an account for the wiki.nftables.org page and help us improve the content.
- Provide an iptables to nft translation via the iptables-translate utility. You can give a try to the following extensions: icmp, icmp6, rt.
- Try to fix any of the existing nft bugs in bugzilla.netfilter.org.
For more information on nftables, please check: http://wiki.nftables.org
radix tree __alloc_fd
Mentors:: [:RikvanRiel:Rik van Riel] [:MatthewWilcox:Matthew Wilcox]
Currently sys_open() uses a linear search through a bitmap to find the first free file descriptor. This custom code could be replaced with the generic radix tree code, using a radix tree tag to keep track of where in the tree free file descriptor entries are. This replaces some custom code in the kernel with generic code (hopefully shrinking the size of the kernel), could result in some memory savings for processes with relatively few open files, and hopefully improve performance of workloads with very large numbers of open files.
If you think you may be interested in this project, here are some small tasks to start with:
- read how sys_open() currently finds the first open file descriptor, and allocates/resizes the file descriptor table
- read how the radix tree code works
- email Matthew and Rik a description of your findings, and a proposed project time line
If you have any questions, please email Matthew and Rik.
Project
Mentor:: [:WikiName:Mentor names]
Brief project description.
Yeah, that sounds cool!
If you are interested in being a Linux kernel intern, please:
Join the [https://groups.google.com/forum/#!forum/outreachy-kernel outreachy-kernel mailing list]
- Join the #outreachy IRC channel on irc.gnome.org
- Join the #kernel-outreachy IRC channel on irc.oftc.net
Read our [:OutreachyApply:instructions for applying], and apply by October 17.
Use our [:Outreachyfirstpatch:tutorial] to send in your first kernel patch by October 17.
After you have 10 cleanup patches and at least two patchsets, choose some [:OutreachyTasks:small tasks] to complete.