2641
Comment:
|
8929
radix tree __alloc_fd
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
= Outreach Program for Women (OPW) Intro = | ## page was renamed from OPWIntro = Outreachy (formerly FOSS Outreach Program for Women (OPW) and Project Ascend Alumni) = Please see the [https://www.gnome.org/outreachy/ Outreachy homepage] for an introduction to the program. |
Line 3: | Line 5: |
The Linux Foundation is sponsoring internships for women to work on the Linux kernel. The kernel is the most basic layer of the Linux operating system. The kernel encompasses many things: hardware drivers, filesystems, security, task scheduling, and much more. | The application period for '''Round 13''' will start on September 12, 2016. It's too early to send patches to the outreachy kernel mailing list, but please consider working through the other parts of the tutorial if you are interested in applying. |
Line 5: | Line 7: |
== Participating kernel projects == | We are looking for round 13 [:OutreachySponsor:funding sponsors] and Linux kernel [:OutreachyMentor:mentors]. Please see the linked FAQ pages if you want to help out. |
Line 7: | Line 9: |
Currently, we have two participating projects. | Welcome Outreachy applicants! Our [:OutreachySponsor:round 13 sponsors] have generiously donated funds for internships for women, genderqueer, genderfluid, or genderfree people, and residents and nationals of the United States of any gender who are Black/African American, Hispanic/Latino, American Indian, Alaska Native, Native Hawaiian, or Pacific Islander to work on the Linux kernel. The kernel is the most basic layer of the Linux operating system. It encompasses many things: hardware drivers, filesystems, security, task scheduling, and much more. |
Line 9: | Line 11: |
=== USB === | '''News''' This year, we ask that you send all patches to the appropriate staging driver maintainers, as well as to the outreachy mailing list. See [:FirstKernelPatch#submit_a_patch:Submit a patch] for more information. |
Line 11: | Line 13: |
The Linux kernel includes a USB stack that communicates with the hardware behind your USB ports (USB host controller drivers), and includes USB device drivers that talk to your USB devices (USB device drivers). Working on USB is fun because you get to make all sorts of interesting USB devices work. | = How to apply = The application period for Outreachy Round 13 is September 12 to October 17. Please fill your [https://live.gnome.org/OutreachProgramForWomen#Application_Process application] by '''October 17''', and complete your kernel patch by '''October 17''' also (7pm UTC in both cases). Applicants that do not complete the first patch will not be considered for an internship. Please take a look at our [:OutreachyApply:application FAQ] for more info on how to fill out your application. |
Line 13: | Line 16: |
Sarah Sharp is sponsoring an intern to work on the USB 3.0 host controller driver. The Linux kernel USB 3.0 driver was introduced in 2009, and works 10 times faster than USB 2.0 devices. The USB 3.0 driver still needs a lot of work, so there are plenty of small bug fixes that interns can tackle. If time permits, interns could also work on small to medium features. | If you are interested in being a Linux kernel intern, please: |
Line 15: | Line 18: |
FIXME: add links to kernel.bugzilla.org entries for these tasks. | * Join the [https://groups.google.com/forum/#!forum/outreachy-kernel outreachy-kernel mailing list] * Join the #outreachy IRC channel on irc.gnome.org * Join the #kernel-outreachy IRC channel on irc.oftc.net * Read our [:OutreachyApply:instructions for applying], and apply by October 17. * Use our [:Outreachyfirstpatch:tutorial] to send in your first kernel patch by October 17. |
Line 17: | Line 24: |
Necessary skills: Experience in C or C++ Optional but learnable skills: Knowledge of operating systems, USB |
= Participating Linux kernel projects = Applicants for all projects should have basic experience with C or C++ and boolean algebra. Optionally, we would love it if you have basic operating system knowledge, know your way around a Linux/UNIX command line, and/or know the revision system called git. ''Please note that these three skills can be learned during the internship.'' |
Line 20: | Line 27: |
Suggested reading for accepted interns: * [http://lwn.net/Kernel/LDD3/ Linux Device Drivers] * [http://www.beyondlogic.org/usbnutshell/usb1.shtml USB in a Nutshell] |
Some projects may have small tasks you can complete as part of the application process. '''Do not''' start on these tasks until after you complete the [:Outreachyfirstpatch:first patch tutorial] and Greg Kroah-Hartman has accepted at least ten of your cleanup patches and two of your patchsets. In order to ensure applicants aren't working on the same task, we need your help in coordinating who is working on what task. Please see the [:OutreachyTasks:Outreachy tasks page] for details before starting on a task! |
Line 24: | Line 29: |
== Ethernet == | = Round 13 projects = Previous projects, from round 12 projects are available [:OutreachyRound12:here]. For each project, if you click on the proposer's name, you may find more information. |
Line 26: | Line 32: |
Carolyn Wyborny and Anjali Jain are sponsoring a project to work on 1 gig ethernet. (More info coming soon.) | == Coccinelle == ''Mentor:'': [:JuliaLawall:Julia Lawall] |
Line 28: | Line 35: |
Coccinelle is a program matching and transformation tool that has been extensively used for improving Linux kernel code. This project will involve using Coccinelle to address a security issue in the Linux kernel. | |
Line 29: | Line 37: |
= Getting Started = | The Linux kernel contains many data structures whose contents never change once they are initialized, many of which contain function pointers. Such structures that are modifiable at run time constitute a security risk, because an attacker may be able to overwrite the field value with a pointer to malicious code, that will then be executed with full kernel privileges. The first goal of this project is to use Coccinelle to insert const annotations on such structures to prevent runtime modfications. Some structures, however, cannot be made const, because they are initialized in several steps. In these cases, it may be possible to annotate the structure as {{{__ro_after_init}}}, if all of the initializations can take place during the init phase. The second goal is to add {{{__ro_after_init}}} where they are needed. This may requiring adding {{{__init}}} annotations on some code that is actually only needed during the init phase.line bash script. Please indicate in your application whether you are interested in this part of the project, however, interest in this part of the project is not a prerequisite for being selected as an intern. |
Line 31: | Line 39: |
TODO: * Intro, what the goals are, why they should be excited about developing for the kernel. :) * What skills are good to have (e.g. having taken an OS class is good), or how they can get those skills later on, like by reading Linux Device Drivers * Outline of what this tutorial covers * If you run into any issues, ask on the opw irc channel, or email sarah.a.sharp at linux.intel.com * Step 0: install Linux on a home computer (alternative instructions for installing in a VM would be good, but I have no background in that). * Build a custom kernel * Find out which drivers you have installed (maybe plug in any USB devices on hand) * Make small change in one of the drivers (e.g. run checkpatch over them, or fix some grammer in the printks) * Or maybe pick a driver in staging and run checkpatch on it * Test your patch (may need to enable debugging) * Make a patch (link to art of patch description creation) * Send patch to kernel newbies mailing list as RFC (perhaps we need a separate mailing list?) |
More information about Coccinelle is available [http://coccinelle.lip6.fr/ here], including a [http://coccinelle.lip6.fr/papers/tutorial.pdf tutorial]. For some Coccinelle small tasks, click on the mentor name. == IIO driver == ''Mentor:'': [:AlisonSchofield:Alison Schofield] and [:DanielBaluta:Daniel Baluta] A driver allows applications to communicate and control hardware devices. Each development cycle, driver changes account for more than a half of the total Linux kernel code changes. The goal of this project is to write a driver for a sensor using the Industrial I/O interface. In the first part of the project you will get familiar with the hardware and the IIO subsystem then implement raw readings from the device. After upstreaming the code you will enhance the driver with advanced features such as support for buffered readings, power management and interrupts. The exact device will be decided when the internship starts. We will provide you the hardware setup necessary to test the driver. If you are interested in this project please consider solving the [:IIO_tasks:IIO tasks]. == nftables == ''Mentor:'': [:pablo:Pablo Neira Ayuso] nftables provides a replacement for the very popular {ip,ip6,arp,eb}tables tools. nftables reuses most of the Netfilter components such as the existing hooks, connection tracking system, NAT, userspace queueing, logging among many other features. So we have only replaced the packet classification framework. nftables comes with a new userspace utility ''nft'' and the low-level userspace library ''libnftnl''. The goal will be to help finish the translation layer software that converts from the iptables syntax to nftables, complete some simple missing features and fixing bugs whenever possible. If you are interested in this project please consider solving any of the following tasks: * Request an account for the wiki.nftables.org page and help us improve the content. * Provide an iptables to nft translation via the iptables-translate utility. You can give a try to the following extensions: icmp, icmp6, rt. * Try to fix any of the existing nft bugs in bugzilla.netfilter.org. For more information on nftables, please check: http://wiki.nftables.org == radix tree __alloc_fd == ''Mentors:'': [:RikvanRiel:Rik van Riel] [:MatthewWilcox:Matthew Wilcox] Currently sys_open() uses a linear search through a bitmap to find the first free file descriptor. This custom code could be replaced with the generic radix tree code, using a radix tree tag to keep track of where in the tree free file descriptor entries are. This replaces some custom code in the kernel with generic code (hopefully shrinking the size of the kernel), could result in some memory savings for processes with relatively few open files, and hopefully improve performance of workloads with very large numbers of open files. If you think you may be interested in this project, here are some small tasks to start with: * read how sys_open() currently finds the first open file descriptor, and allocates/resizes the file descriptor table * read how the radix tree code works * email Matthew and Rik a description of your findings, and a proposed project time line If you have any questions, please email Matthew and Rik. == Project == ''Mentor:'': [:WikiName:Mentor names] Brief project description. = Yeah, that sounds cool! = If you are interested in being a Linux kernel intern, please: * Join the [https://groups.google.com/forum/#!forum/outreachy-kernel outreachy-kernel mailing list] * Join the #outreachy IRC channel on irc.gnome.org * Join the #kernel-outreachy IRC channel on irc.oftc.net * Read our [:OutreachyApply:instructions for applying], and apply by October 17. * Use our [:Outreachyfirstpatch:tutorial] to send in your first kernel patch by October 17. * After you have 10 cleanup patches and at least two patchsets, choose some [:OutreachyTasks:small tasks] to complete. |
Outreachy (formerly FOSS Outreach Program for Women (OPW) and Project Ascend Alumni)
Please see the [https://www.gnome.org/outreachy/ Outreachy homepage] for an introduction to the program.
The application period for Round 13 will start on September 12, 2016. It's too early to send patches to the outreachy kernel mailing list, but please consider working through the other parts of the tutorial if you are interested in applying.
We are looking for round 13 [:OutreachySponsor:funding sponsors] and Linux kernel [:OutreachyMentor:mentors]. Please see the linked FAQ pages if you want to help out.
Welcome Outreachy applicants! Our [:OutreachySponsor:round 13 sponsors] have generiously donated funds for internships for women, genderqueer, genderfluid, or genderfree people, and residents and nationals of the United States of any gender who are Black/African American, Hispanic/Latino, American Indian, Alaska Native, Native Hawaiian, or Pacific Islander to work on the Linux kernel. The kernel is the most basic layer of the Linux operating system. It encompasses many things: hardware drivers, filesystems, security, task scheduling, and much more.
News This year, we ask that you send all patches to the appropriate staging driver maintainers, as well as to the outreachy mailing list. See [:FirstKernelPatch#submit_a_patch:Submit a patch] for more information.
How to apply
The application period for Outreachy Round 13 is September 12 to October 17. Please fill your [https://live.gnome.org/OutreachProgramForWomen#Application_Process application] by October 17, and complete your kernel patch by October 17 also (7pm UTC in both cases). Applicants that do not complete the first patch will not be considered for an internship. Please take a look at our [:OutreachyApply:application FAQ] for more info on how to fill out your application.
If you are interested in being a Linux kernel intern, please:
Join the [https://groups.google.com/forum/#!forum/outreachy-kernel outreachy-kernel mailing list]
- Join the #outreachy IRC channel on irc.gnome.org
- Join the #kernel-outreachy IRC channel on irc.oftc.net
Read our [:OutreachyApply:instructions for applying], and apply by October 17.
Use our [:Outreachyfirstpatch:tutorial] to send in your first kernel patch by October 17.
Participating Linux kernel projects
Applicants for all projects should have basic experience with C or C++ and boolean algebra. Optionally, we would love it if you have basic operating system knowledge, know your way around a Linux/UNIX command line, and/or know the revision system called git. Please note that these three skills can be learned during the internship.
Some projects may have small tasks you can complete as part of the application process. Do not start on these tasks until after you complete the [:Outreachyfirstpatch:first patch tutorial] and Greg Kroah-Hartman has accepted at least ten of your cleanup patches and two of your patchsets. In order to ensure applicants aren't working on the same task, we need your help in coordinating who is working on what task. Please see the [:OutreachyTasks:Outreachy tasks page] for details before starting on a task!
Round 13 projects
Previous projects, from round 12 projects are available [:OutreachyRound12:here]. For each project, if you click on the proposer's name, you may find more information.
Coccinelle
Mentor:: [:JuliaLawall:Julia Lawall]
Coccinelle is a program matching and transformation tool that has been extensively used for improving Linux kernel code. This project will involve using Coccinelle to address a security issue in the Linux kernel.
The Linux kernel contains many data structures whose contents never change once they are initialized, many of which contain function pointers. Such structures that are modifiable at run time constitute a security risk, because an attacker may be able to overwrite the field value with a pointer to malicious code, that will then be executed with full kernel privileges. The first goal of this project is to use Coccinelle to insert const annotations on such structures to prevent runtime modfications. Some structures, however, cannot be made const, because they are initialized in several steps. In these cases, it may be possible to annotate the structure as __ro_after_init, if all of the initializations can take place during the init phase. The second goal is to add __ro_after_init where they are needed. This may requiring adding __init annotations on some code that is actually only needed during the init phase.line bash script. Please indicate in your application whether you are interested in this part of the project, however, interest in this part of the project is not a prerequisite for being selected as an intern.
More information about Coccinelle is available [http://coccinelle.lip6.fr/ here], including a [http://coccinelle.lip6.fr/papers/tutorial.pdf tutorial]. For some Coccinelle small tasks, click on the mentor name.
IIO driver
Mentor:: [:AlisonSchofield:Alison Schofield] and [:DanielBaluta:Daniel Baluta]
A driver allows applications to communicate and control hardware devices. Each development cycle, driver changes account for more than a half of the total Linux kernel code changes.
The goal of this project is to write a driver for a sensor using the Industrial I/O interface. In the first part of the project you will get familiar with the hardware and the IIO subsystem then implement raw readings from the device. After upstreaming the code you will enhance the driver with advanced features such as support for buffered readings, power management and interrupts. The exact device will be decided when the internship starts.
We will provide you the hardware setup necessary to test the driver. If you are interested in this project please consider solving the [:IIO_tasks:IIO tasks].
nftables
Mentor:: [:pablo:Pablo Neira Ayuso]
nftables provides a replacement for the very popular {ip,ip6,arp,eb}tables tools. nftables reuses most of the Netfilter components such as the existing hooks, connection tracking system, NAT, userspace queueing, logging among many other features. So we have only replaced the packet classification framework. nftables comes with a new userspace utility nft and the low-level userspace library libnftnl. The goal will be to help finish the translation layer software that converts from the iptables syntax to nftables, complete some simple missing features and fixing bugs whenever possible.
If you are interested in this project please consider solving any of the following tasks:
- Request an account for the wiki.nftables.org page and help us improve the content.
- Provide an iptables to nft translation via the iptables-translate utility. You can give a try to the following extensions: icmp, icmp6, rt.
- Try to fix any of the existing nft bugs in bugzilla.netfilter.org.
For more information on nftables, please check: http://wiki.nftables.org
radix tree __alloc_fd
Mentors:: [:RikvanRiel:Rik van Riel] [:MatthewWilcox:Matthew Wilcox]
Currently sys_open() uses a linear search through a bitmap to find the first free file descriptor. This custom code could be replaced with the generic radix tree code, using a radix tree tag to keep track of where in the tree free file descriptor entries are. This replaces some custom code in the kernel with generic code (hopefully shrinking the size of the kernel), could result in some memory savings for processes with relatively few open files, and hopefully improve performance of workloads with very large numbers of open files.
If you think you may be interested in this project, here are some small tasks to start with:
- read how sys_open() currently finds the first open file descriptor, and allocates/resizes the file descriptor table
- read how the radix tree code works
- email Matthew and Rik a description of your findings, and a proposed project time line
If you have any questions, please email Matthew and Rik.
Project
Mentor:: [:WikiName:Mentor names]
Brief project description.
Yeah, that sounds cool!
If you are interested in being a Linux kernel intern, please:
Join the [https://groups.google.com/forum/#!forum/outreachy-kernel outreachy-kernel mailing list]
- Join the #outreachy IRC channel on irc.gnome.org
- Join the #kernel-outreachy IRC channel on irc.oftc.net
Read our [:OutreachyApply:instructions for applying], and apply by October 17.
Use our [:Outreachyfirstpatch:tutorial] to send in your first kernel patch by October 17.
After you have 10 cleanup patches and at least two patchsets, choose some [:OutreachyTasks:small tasks] to complete.